Information, Calcul et Communication
(partie programmation) :

Cours de programmation (C++)
Pointeurs et références

==nvoce Vjdéos, transparents et quiz

WWw.coursera.org/learn/initiation-programmation-cpp/

Jamila Sam

Laboratoire d’Intelligence Artificielle
Faculté 1&C

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

swvce Qbjectifs du cours d’aujourd’hui

> Rappels sur les pointeurs :
» 3 cas d'utilisation a ne pas confondre

> 3 types de « pointeurs » :

> références (mais voir point suivant)
> pointeurs « ala C »
> pointeurs « intelligents »

> ne pas confondre pointeurs et références!!

» Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

= Semaine 7

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

-pr-
ICC (partie programmation) — Cours 11 : Pointeurs er références — 1/25 cP'- L ICC (partie programmation) — Cours 11 : Pointeurs er références — 2/25

Les « pointeurs », a quoi ¢ca sert?

cas d'utilisation

types de
« pointeurs »

En programmation, les « pointeurs » servent essentiellement a
trois choses :

@ a permettre a plusieurs portions de code de partager des
« objets » (données, fonctions) sans les dupliquer
s référence

@ a pouvoir choisir des éléments non connus a priori (au
moment de la programmation)
= généricité

® a pouvoir manipuler des objets dont la durée de vie dépasse
la portée
= allocation dynamique
&d (moins important en wﬂ en raison de la move semantic)

Important : Il faut toujours avoir clairement a I'esprit pour lequel
de ces trois objectifs on utilise un pointeur dans un programme !

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cpr-
ICC (partie programmation) — Cours 11 : Pointeurs er références — 3/25 EPF L ICC (partie programmation) — Cours 11 : Pointeurs er références — 4/25

https://www.coursera.org/learn/initiation-programmation-cpp/

Les différents « pointeurs » Les différents « pointeurs »

cas d'utilisation cas d'utilisation

s En C++, il existe plusieurs sortes de « pointeurs » : s
» les références
totalement gérées en interne par le compilateur. Trés s(res, donc; w lesquels utiliser ?
mais sont fondamentalement différentes des vrais pointeurs. N § _
] utilisation I sur des données | sur des fonctions |
> e les « pointeurs intelligents » (smart pointers) référence réferences nom de la fonction
o _ (ou pointeurs a la C)
Ig?eres par Iesgrogrgmmeur, mais avec des gardes-fous. généricité pointeur a la C std::function
den e)l(lslt)e'bl' 'tﬁ?lque—ptr’ shared_ptr, weak_ptr ou index dans un tableau | ou pointeur & la C
(dans la bibliotheque memory) allocation dynamique smart-pointers
surtout unique_ptr —
> e les std::functions @ (dans la (ou pointeurs a la C)
bibliothéque functional) «Utilisez des références quand vous pouvez, des pointeurs quand
pour désigner (« pointer sur ») des fonctions vous devez.»
> les « pointeurs a la C » (build-in pointers)
©EPFL 2025-26 ©EPFL 2025-26
Jamila Sam Jamila Sam
& Jean-Gédrio Chappeler les plus puissants (peuvent tout faire) mais les plus « dangeureux » & Jean-Gédric Chappeler
-pr- -pr-
'=P'-L ICC (partie programmation) — Cours 11 : Pointeurs er références — 5/25 '=P'-L ICC (partie programmation) — Cours 11 : Pointeurs er références — 6/25
Le type reféerence Attention aux pieges!
ty;:e;de“ - ; ; . . ty;:e;de‘“ o
o Une référence est un synonyme d’identificateur, un autre nom pomeer » sémantique de I'affectation
pour un objet existant.
La déclaration d’'une référence se fait selon la syntaxe suivante : int 1i(3); , int 1(3); 4
type& nom_reference (identificateur); inte j(i); // alias int j(i); // copie
/+* 1 et j sont la * /* 1 et j vivent leur =
Aprés une telle déclaration, nom_reference peut étre utilisé + MEME case memoire +/ + vie separement */

= 4; // j AUSSI vaut 4 = 4; // j vaut encore 3

partout ou identificateur peut I'étre. i i
3 =6; // 1 AUSSI vaut 6| j = 6; // 1 vaut encore 4

Une référence permet donc de désigner un objet indirectement :

X
1 nom (référence) . .
int val(l); {/ & supplémentaire » sémantique de const

r

: T 7 o int 1(3);
int&e x(val); @ in ’

o const ints j(i); /+ 1 et j sont les memes.
‘ Uy * On ne peut pas changer la

3

1

* valeur VIA J *
* (mais on peut le faire *
Les références sont trés utiles lors du passage d’arguments aux * par ailleurs). */
fonctions, mais aussi parfois pour les valeurs de retour comme nous le j = 12; // NON
OEPFL 202525 verrons par exemple dans le cas de la surcharge d’opérateurs. OEPrL 202526 i =12; // OUI, et j AUSSI vaut 12 !

& Jean-Cédric Chappelier & Jean-Cédric Chappelier

c=PrL

cpr-
ICC (partie programmation) — Cours 11 : Pointeurs er références — 7/25 = Pi' L ICC (partie programmation) — Cours 11 : Pointeurs er références — 8/25

Spécificités des références) cvid r-value references

cas d'utilisation cas d'utilisation

types de types de

oaniours » Une référence : Moaniours »
> doit absolument étre initialisée (vers un objet existant) :
int i;
inte ri(i); // OK

ints rj; // NON, la reference rj doit En gl il existe en plus des références vers les valeurs

// etre liee a un objet ! transitoires : les r-value references.
> ne peut étre liée qu’'a un seul objet : intss temp (£());
int i;
ints ri(i);
int j(2); p ; Cela n’est utile que pour des raisons d’optimisation (éviter des
ri = j; ne veut pas dire que ri ‘‘pointe’’ sur j : :
// mais que i prend la valeur de j ! copies, move semantlcs)
cout << i << endl; // affiche 2 s Voir la mini-référence sur C++11
> ne peut pas étre référencée :
int i(3);

int¢ ri(i);
ints& rri(ri); // NON
ints&s rri(ri); // NON PLUS

©EPFL 2025-26

smsn » on ne peut (donc) pas faire de tableau de références : - (s

EPFL ICC (partie programmation) — Cours 11 : Pointeurs er références — 9/25 EPFL ICC (partie programmation) — Cours 11 : Pointeurs er références — 10/25
Pourquoi ne pas se contenter des Pourquoi ne pas se contenter des

s pointeurs ? s pointeurs ?

« pointeurs » « pointeurs »

» Lusage de référence permet un style plus concis (le

s , . . déréférencement explicite n’est plus nécessaire). Comparez :
Une référence c’est donc comme un pointeur mais avec quelques))
void echange (intx a,

« gardes-fous » ints b)
{

int copie(xa);

*a = *b;

*b = copie;

s dans 'exemple précédent :

> echange (int& a, inté&b) ne peut étre appelée qu'avec

. . N } . , , }
echange (i, j), ou i et § sont des variables déclarées dans

void echange (ints a,

le bloc d’appel. ints o)
- - H b 2 L {
» avec echange (int* a, intx Db) rien n'empéche I'appel int copie(a);
ou b par exemple ne pointe vers rien de valide ! a = b;
b = copie;

o " . }
«Utilisez des références quand vous pouvez, des pointeurs quand

vous devez.» = Le passage par référence est le mode a privilégier
©EPFL 2025-26 ©EPFL 2025-26 absolument en C++ |Orsque I'on veut qU’Une fonction puisse
Jamila Sam Jamila Sam e . ,
& Jean-Cédric Chappelier & Jean-Cédric Chappelier mod'ﬂer une Var'able paSSee en argument

[- P [- L [- P [- L
(=1 ICC (partie programmation) — Cours 11 : Pointeurs er références — 11/25 (=1 ad ICC (partie programmation) — Cours 11 : Pointeurs er références — 12/25

cas d'utilisation

types de
« pointeurs »

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Approfondissements
Effets de bords
Pointeurs cons

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Houlala!

LI
(A

y Ay,
g@ﬁz GARE AUX CONFUSION!!

C++ utilise malheureusement deux notations identiques (& et *)
pour deux choses différentes!

&id est 'adresse de la variable
id, par exemple en affectation
d’un pointeur.

type& id est une référence
sur une variable id dans le pas-
sage par référence d’'une fonc-
tion

CE N’EST PAS LA MEME CHOSE!

typex id; déclarare une va-
riable id comme un pointeur sur | présente le contenu de I'endroit
un type de base type pointé par id

CE N’EST PAS LA MEME CHOSE!

xid (ou id est un pointeur) re-

ICC (partie programmation) — Cours 11 : Pointeurs er références — 13/25

Pointeurs sur fonctions en gwid €23

gaﬂ généralise la notion de « pointeur sur fonction » au travers
du type function de la bibliothéque functional.

Exemple :

#include <functional>
%ﬁéction<double(dcuble)> f;

é;ﬁble g (double x) { return x»*x; }
-

z = f(a + b);

ICC (partie programmation) — Cours 11 : Pointeurs er références — 15/25

Approfondissements
Effets de bords

Pointeurs consf

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Approfondissements
Effets de bords
Pointeurs cons

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Pointeurs sur fonctions g3

En C++, on peut en fait pointer sur n’importe quel objet. On peut
en particulier pointer sur des fonctions.

La syntaxe consiste a mettre («ptr) a la place du nomde la
fonction.

Par exemple :

double f (int i); estune fonction quiprend un int en
argument et retourne un double comme valeur

double (*g) (int 1i); estun pointeur sur une fonction du

méme type que ci-dessus.
On peut maintenant par exemple faire : g=f;

puis ensuite : z=g(i);

Note : pas besoin du & ni du = dans l'utilisation des pointeurs de
fonctions.

ICC (partie programmation) — Cours 11 : Pointeurs er références — 14/25

Supposons que vous ayez préprogrammé 5 fonctions :
double fl (double x);

double f5 (double x);

et que vous souhaitiez écrire un programme capable d’intégrer
I'une de ces fonctions :

do {

cout << "De quelle fonction voulez-vous calculer "

<< "l’integrale [1-5] 2 ";

cin >> rep;
} while ((rep < 1) || (rep > 5))
Comment manipuler de fagon générique la réponse de
I'utilisateur ?

= avec un pointeur sur la fonction correspondante.

ICC (partie programmation) — Cours 11 : Pointeurs er références — 16/25

Approfondissements
Effets de bords

Pointev

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Approfondissements
Effets de bords
Pointeu 0

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

€29 Le programme complet (C++98) 1/2 €£d

#include <iostream>
#include <cmath>

double f1 (double x) { return xxx; }
double f4 (double x) { return sqrt (exp(x)); }
double f5(double x) { return log(l.0+sin(x)); }

/+ Fonction est un nouveau type : pointeur sur des fonctions *
* prennant un double en argument et retournant un double */
typedef double (*Fonction) (double);}

Fonction demander_fonction ()
{
int rep;
Fonction choisie;
do {
cout << "De quelle fonction voulez-vous calculer "
<< "l’integrale [1-5] ? ";
cin >> rep;

} while ((rep < 1) (rep > 5))

I

switch (rep) {
case 1: choisie
case 2: choisie

fl ; break ;
sin ; break ;

ICC (partie programmation) — Cours 11 : Pointeurs er références — 17 /25

€ZD Le programme complet (ewid)

Il suffit de remplacer
typedef double (*xFonction) (double) ;
par
typedef function<double (double)> Fonction;

Reste cependant une subtilité (avancée!) :
certaines fonctions de la librairie standard ont plusieurs protoypes
(surcharge) et I'affectation d’'une function est dans ce cas
ambigue.
Par exemple, I'affectation du cas 2 :
choisie = sin;

provoque une erreur (d’ambiguité) du compilateur.
On est alors obligé de désambiguiser : indiquer de quel sin il
s’agit.
Cela se fait par :

choisie = (double (*) (double)) sin;

ICC (partie programmation) — Cours 11 : Pointeurs er références — 19/25

Approfondissements
Effets ds

Pointeurs

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Effets de bords
Pointeurs cons

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

€2 Le programme complet (C++98) 2/2 €g)

case 3: choisie
case 4: choisie
case 5: choisie

}

exp ; break ;
f4 ; break ;
f5 ; break ;

return choisie;

}

double demander_ nombre() { ... }
double integre ({Fonction f, double a, double b) { ...f(a)... }
int main () {

double a (demander_nombre());
double b (demander_nombre());

Fonction choix (demander_fonction());

cout.precision(12);
cout << "Integrale entre " << a

<< " et " << b << " :" << endl;
cout << integre(choix, a, b) << endl;
return 0;

}

Note : ce programme peut encore étre amélioré, notamment en
utilisant des tableaux...

ICC (partie programmation) — Cours 11 : Pointeurs er références — 18/25

€ Pointeurs et effets de bord

Comme un pointeur contient 'adresse mémoire d’'une valeur, si
I'on passe un pointeur en argument d’une fonction, foute
modification faite sur cette valeur a l'intérieur de la fonction sera
répercutée a l'extérieur.

— effet de bord

Exemple (a ne pas suivre : utilisez plutét le passage par
référence) :
void swap (intx x, intx y) {
int tmp (xx);
*X:*y;
*y=tmp;
}
main () {
int x(3),v(2);
cout << x << "," << y << endl; // affiche 3,2
swap (&x, &vy);
cout << x << "," << y << endl; // affiche 2,3

ICC (partie programmation) — Cours 11 : Pointeurs er références — 20/25

Pointeurs constants et Pointeurs constants et
@ pointeurs sur des constantes @ @ pointeurs sur des constantes @

Effets de bords Effets de bords
Pointeurs const Pointeurs const

, Exemple :
type const#* ptr; (OUconst typex ptr)déclare un int 1(2), 5(3);
pointeur sur un objet constant de type type : on ne pourra pas int constx pl(&i);
modifier la valeur de I'objet au travers de ptr (mais on pourra intx const p2(s&i);
faire pointer ptr vers un autre objet). ,
cout << 1 << ", " << xpl << ", " << xp2 << endl; // 2,2,2
// *pl = 5; /% erreur de compilation : on ne peut pas
typex const ptr(&obj); déclare un pointeur constant sur » modifier au travers de pl «/
un objet obj de type type : on ne pourra pas faire pointer pt r *P2 = 5
vers autre chose (mais on pourra modifier la valeur de ob 5 au cout << i << ", " << xpl << ", << xp2 << endl; // 5,55
travers de ptr).
pl = &J;
// p2 = &j; /* erreur de compilation : on ne peut pas

. , . . . * modifier p2 =/
Pour résumer : const s’applique toujours au type directement

précédent, sauf si il est au début, auquel cas il s’applique au type cout << i << ", " << xpl << ", " << «p2 << endl; // 5,3,5
©EPFL 202526 dlreCtement suivant. ©EPFL 2025-26
ia.;r:;—scagiric Chappelier ia.;r:;—scaézric Chappelier
-pr- -pr-
EPI'L ICC (partie programmation) — Cours 11 : Pointeurs er références — 21/25 cP'-L ICC (partie programmation) — Cours 11 : Pointeurs er références — 22/25
Pointeurs & références % Etude de cas
Ptk o Fusete
Déclaration : typex pointeur;

Déclaration/Initialisation :
typex pointeur (adresse);
unique_ptr<type> (new type(valeur));
type& reference(objet);
> |les amis de mes amis ...
Adresse d’une variable : svariable
Acces au contenu pointé par un pointeur : xpointeur

Allocation mémoire :
pointeur = new type;
pointeur = new type(valeur);

Libération de la zone mémoire allouée :
delete pointeur (pour les « pointeurs classiques », obligatoire)

©EPFL 2025-26 ©EPFL 2025-26
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier

[- P [- L [- P [- L
(=1 ICC (partie programmation) — Cours 11 : Pointeurs er références — 23/25 (=1 ad ICC (partie programmation) — Cours 11 : Pointeurs er références — 24 /25

Pour préparer les prochains cours

Etude de cas

Plus de nouvelles vidéos a visionner

Les prochain cours :
> Présentation du mini-projet (24.11)
> Les entrées-sorties (1.12)

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

-pr-
= P'- L ICC (partie programmation) — Cours 11 : Pointeurs er références — 25/25

	Support MOOC
	Rappels
	cas d'utilisation
	types de « pointeurs »

	Approfondissements
	Effets de bords
	Pointeurs const

	Etude de cas

