
Support MOOC

Rappels

Approfondissements

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Information, Calcul et Communication
(partie programmation) :

Cours de programmation (C++)
Pointeurs et références

Jamila Sam

Laboratoire d’Intelligence Artificielle
Faculté I&C

ICC (partie programmation) – Cours 11 : Pointeurs er références – 1 / 25

Support MOOC

Rappels

Approfondissements

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Vidéos, transparents et quiz

www.coursera.org/learn/initiation-programmation-cpp/

☞ Semaine 7

ICC (partie programmation) – Cours 11 : Pointeurs er références – 2 / 25

Support MOOC

Rappels

Approfondissements

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Objectifs du cours d’aujourd’hui

▶ Rappels sur les pointeurs :
▶ 3 cas d’utilisation à ne pas confondre

▶ 3 types de « pointeurs » :
▶ références (mais voir point suivant)
▶ pointeurs « à la C »
▶ pointeurs « intelligents »

▶ ne pas confondre pointeurs et références ! !

▶ Etude de cas

ICC (partie programmation) – Cours 11 : Pointeurs er références – 3 / 25

Support MOOC

Rappels
cas d’utilisation

types de
« pointeurs »

Approfondissements

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Les « pointeurs », à quoi ça sert?

En programmation, les « pointeurs » servent essentiellement à
trois choses :

➀ à permettre à plusieurs portions de code de partager des
« objets » (données, fonctions) sans les dupliquer
☞ référence

➁ à pouvoir choisir des éléments non connus a priori (au
moment de la programmation)
☞ généricité

➂ à pouvoir manipuler des objets dont la durée de vie dépasse
la portée
☞ allocation dynamique

(moins important en en raison de la move semantic)

Important : Il faut toujours avoir clairement à l’esprit pour lequel
de ces trois objectifs on utilise un pointeur dans un programme!

ICC (partie programmation) – Cours 11 : Pointeurs er références – 4 / 25

https://www.coursera.org/learn/initiation-programmation-cpp/

Support MOOC

Rappels
cas d’utilisation

types de
« pointeurs »

Approfondissements

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Les différents « pointeurs »
En C++, il existe plusieurs sortes de « pointeurs » :
▶ les références

totalement gérées en interne par le compilateur. Très sûres, donc ;
mais sont fondamentalement différentes des vrais pointeurs.

▶ les « pointeurs intelligents » (smart pointers)

gérés par le programmeur, mais avec des gardes-fous.
Il en existe 3 : unique_ptr, shared_ptr, weak_ptr
(dans la bibliothèque memory)

▶ les std::functions (dans la

bibliothèque functional)

pour désigner (« pointer sur ») des fonctions

▶ les « pointeurs à la C » (build-in pointers)

les plus puissants (peuvent tout faire) mais les plus « dangeureux »
ICC (partie programmation) – Cours 11 : Pointeurs er références – 5 / 25

Support MOOC

Rappels
cas d’utilisation

types de
« pointeurs »

Approfondissements

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Les différents « pointeurs »

☞ lesquels utiliser?

utilisation sur des données sur des fonctions
référence références nom de la fonction(ou pointeurs à la C)
généricité pointeur à la C std::function

ou index dans un tableau ou pointeur à la C
allocation dynamique smart-pointers

surtout unique_ptr —
(ou pointeurs à la C)

«Utilisez des références quand vous pouvez, des pointeurs quand
vous devez.»

ICC (partie programmation) – Cours 11 : Pointeurs er références – 6 / 25

Support MOOC

Rappels
cas d’utilisation

types de
« pointeurs »

Approfondissements

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Le type référence

Une référence est un synonyme d’identificateur, un autre nom
pour un objet existant.
La déclaration d’une référence se fait selon la syntaxe suivante :

type& nom_reference(identificateur);

Après une telle déclaration, nom_reference peut être utilisé
partout où identificateur peut l’être.

Une référence permet donc de désigner un objet indirectement :

int val(1);
int& x(val);

1

val nom (référence)
supplémentaire

x

Les références sont très utiles lors du passage d’arguments aux
fonctions, mais aussi parfois pour les valeurs de retour comme nous le
verrons par exemple dans le cas de la surcharge d’opérateurs.

ICC (partie programmation) – Cours 11 : Pointeurs er références – 7 / 25

Support MOOC

Rappels
cas d’utilisation

types de
« pointeurs »

Approfondissements

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Attention aux pièges !

▶ sémantique de l’affectation

int i(3);
int& j(i); // alias
/* i et j sont la *
* MEME case memoire */

i = 4; // j AUSSI vaut 4
j = 6; // i AUSSI vaut 6

int i(3);
int j(i); // copie
/* i et j vivent leur *
* vie separement */

i = 4; // j vaut encore 3
j = 6; // i vaut encore 4

▶ sémantique de const
int i(3);
const int& j(i); /* i et j sont les memes. *

* On ne peut pas changer la *
* valeur VIA J *
* (mais on peut le faire *
* par ailleurs). */

j = 12; // NON
i = 12; // OUI, et j AUSSI vaut 12 !

ICC (partie programmation) – Cours 11 : Pointeurs er références – 8 / 25

Support MOOC

Rappels
cas d’utilisation

types de
« pointeurs »

Approfondissements

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Spécificités des références

Une référence :
▶ doit absolument être initialisée (vers un objet existant) :

int i;
int& ri(i); // OK

int& rj; // NON, la reference rj doit
// etre liee a un objet !

▶ ne peut être liée qu’à un seul objet :
int i;
int& ri(i);
int j(2);
ri = j; // ne veut pas dire que ri ‘‘pointe’’ sur j

// mais que i prend la valeur de j !
cout << i << endl; // affiche 2

▶ ne peut pas être référencée :
int i(3);
int& ri(i);
int& rri(ri); // NON
int&& rri(ri); // NON PLUS

▶ on ne peut (donc) pas faire de tableau de références :-(

ICC (partie programmation) – Cours 11 : Pointeurs er références – 9 / 25

Support MOOC

Rappels
cas d’utilisation

types de
« pointeurs »

Approfondissements

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

r-value references

En , il existe en plus des références vers les valeurs
transitoires : les r-value references.

int&& temp(f());

Cela n’est utile que pour des raisons d’optimisation (éviter des
copies, move semantics)

☞ Voir la mini-référence sur C++11

ICC (partie programmation) – Cours 11 : Pointeurs er références – 10 / 25

Support MOOC

Rappels
cas d’utilisation

types de
« pointeurs »

Approfondissements

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Pourquoi ne pas se contenter des
pointeurs?

Une référence c’est donc comme un pointeur mais avec quelques
« gardes-fous »

☞ dans l’exemple précédent :

▶ echange(int& a, int&b) ne peut être appelée qu’avec
echange(i,j), où i et j sont des variables déclarées dans
le bloc d’appel.

▶ avec echange(int* a, int* b) rien n’empêche l’appel
où b par exemple ne pointe vers rien de valide !

«Utilisez des références quand vous pouvez, des pointeurs quand
vous devez.»

ICC (partie programmation) – Cours 11 : Pointeurs er références – 11 / 25

Support MOOC

Rappels
cas d’utilisation

types de
« pointeurs »

Approfondissements

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Pourquoi ne pas se contenter des
pointeurs?

▶ L’usage de référence permet un style plus concis (le
déréférencement explicite n’est plus nécessaire). Comparez :
void echange(int* a,

int* b)
{
int copie(*a);

*a = *b;

*b = copie;
}

void echange(int& a,
int& b)

{
int copie(a);
a = b;
b = copie;

}

☞ Le passage par référence est le mode à privilégier
absolument en C++ lorsque l’on veut qu’une fonction puisse
modifier une variable passée en argument

ICC (partie programmation) – Cours 11 : Pointeurs er références – 12 / 25

Support MOOC

Rappels
cas d’utilisation

types de
« pointeurs »

Approfondissements

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Houlala !

GARE AUX CONFUSION!

C++ utilise malheureusement deux notations identiques (& et *)
pour deux choses différentes !

type& id est une référence
sur une variable id dans le pas-
sage par référence d’une fonc-
tion

&id est l’adresse de la variable
id, par exemple en affectation
d’un pointeur.

CE N’EST PAS LA MÊME CHOSE!

type* id; déclarare une va-
riable id comme un pointeur sur
un type de base type

*id (où id est un pointeur) re-
présente le contenu de l’endroit
pointé par id

CE N’EST PAS LA MÊME CHOSE!

ICC (partie programmation) – Cours 11 : Pointeurs er références – 13 / 25

Support MOOC

Rappels

Approfondissements
Effets de bords

Pointeurs const

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Pointeurs sur fonctions

En C++, on peut en fait pointer sur n’importe quel objet. On peut
en particulier pointer sur des fonctions.

La syntaxe consiste à mettre (*ptr) à la place du nom de la
fonction.

Par exemple :
double f(int i); est une fonction qui prend un int en
argument et retourne un double comme valeur
double (*g)(int i); est un pointeur sur une fonction du
même type que ci-dessus.

On peut maintenant par exemple faire : g=f;

puis ensuite : z=g(i);

Note : pas besoin du & ni du * dans l’utilisation des pointeurs de
fonctions.

ICC (partie programmation) – Cours 11 : Pointeurs er références – 14 / 25

Support MOOC

Rappels

Approfondissements
Effets de bords

Pointeurs const

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Pointeurs sur fonctions en

généralise la notion de « pointeur sur fonction » au travers
du type function de la bibliothèque functional.

Exemple :
#include <functional>
...
function<double(double)> f;
...
double g(double x) { return x*x; }
...
f = g;
...
z = f(a + b);

ICC (partie programmation) – Cours 11 : Pointeurs er références – 15 / 25

Support MOOC

Rappels

Approfondissements
Effets de bords

Pointeurs const

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Pointeurs sur fonctions, exemple

Supposons que vous ayez préprogrammé 5 fonctions :

double f1(double x);
...
double f5(double x);

et que vous souhaitiez écrire un programme capable d’intégrer
l’une de ces fonctions :
do {
cout << "De quelle fonction voulez-vous calculer "

<< "l’integrale [1-5] ? ";
cin >> rep;

} while ((rep < 1) || (rep > 5))

Comment manipuler de façon générique la réponse de
l’utilisateur?

⇒ avec un pointeur sur la fonction correspondante.

ICC (partie programmation) – Cours 11 : Pointeurs er références – 16 / 25

Support MOOC

Rappels

Approfondissements
Effets de bords

Pointeurs const

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Le programme complet (C++98) 1/2

#include <iostream>
#include <cmath>

double f1(double x) { return x*x; }
double f4(double x) { return sqrt(exp(x)); }
double f5(double x) { return log(1.0+sin(x)); }

/* Fonction est un nouveau type : pointeur sur des fonctions *
* prennant un double en argument et retournant un double */
typedef double (*Fonction)(double);}

Fonction demander_fonction()
{

int rep;
Fonction choisie;
do {

cout << "De quelle fonction voulez-vous calculer "
<< "l’integrale [1-5] ? ";

cin >> rep;
} while ((rep < 1) || (rep > 5))

switch (rep) {
case 1: choisie = f1 ; break ;
case 2: choisie = sin ; break ;

ICC (partie programmation) – Cours 11 : Pointeurs er références – 17 / 25

Support MOOC

Rappels

Approfondissements
Effets de bords

Pointeurs const

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Le programme complet (C++98) 2/2

case 3: choisie = exp ; break ;
case 4: choisie = f4 ; break ;
case 5: choisie = f5 ; break ;

}

return choisie;
}

double demander_nombre() { ... }
double integre({Fonction f, double a, double b) { ...f(a)... }

int main () {
double a(demander_nombre());
double b(demander_nombre());

Fonction choix(demander_fonction());

cout.precision(12);
cout << "Integrale entre " << a

<< " et " << b << " :" << endl;
cout << integre(choix, a, b) << endl;
return 0;

}

Note : ce programme peut encore être amélioré, notamment en
utilisant des tableaux...

ICC (partie programmation) – Cours 11 : Pointeurs er références – 18 / 25

Support MOOC

Rappels

Approfondissements
Effets de bords

Pointeurs const

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Le programme complet ()

Il suffit de remplacer
typedef double (*Fonction)(double);

par
typedef function<double(double)> Fonction;

Reste cependant une subtilité (avancée !) :
certaines fonctions de la librairie standard ont plusieurs protoypes
(surcharge) et l’affectation d’une function est dans ce cas
ambigue.
Par exemple, l’affectation du cas 2 :
choisie = sin;

provoque une erreur (d’ambiguité) du compilateur.
On est alors obligé de désambiguiser : indiquer de quel sin il
s’agit.
Cela se fait par :

choisie = (double(*)(double)) sin;

ICC (partie programmation) – Cours 11 : Pointeurs er références – 19 / 25

Support MOOC

Rappels

Approfondissements
Effets de bords

Pointeurs const

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Pointeurs et effets de bord

Comme un pointeur contient l’adresse mémoire d’une valeur, si
l’on passe un pointeur en argument d’une fonction, toute
modification faite sur cette valeur à l’intérieur de la fonction sera
répercutée à l’extérieur.
=⇒ effet de bord

Exemple (à ne pas suivre : utilisez plutôt le passage par
référence) :
void swap(int* x, int* y) {
int tmp(*x);

*x=*y;

*y=tmp;
}
main() {
int x(3),y(2);
cout << x << "," << y << endl; // affiche 3,2
swap(&x, &y);
cout << x << "," << y << endl; // affiche 2,3

}

ICC (partie programmation) – Cours 11 : Pointeurs er références – 20 / 25

Support MOOC

Rappels

Approfondissements
Effets de bords

Pointeurs const

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Pointeurs constants et
pointeurs sur des constantes

type const* ptr; (ou const type* ptr) déclare un
pointeur sur un objet constant de type type : on ne pourra pas
modifier la valeur de l’objet au travers de ptr (mais on pourra
faire pointer ptr vers un autre objet).

type* const ptr(&obj); déclare un pointeur constant sur
un objet obj de type type : on ne pourra pas faire pointer ptr
vers autre chose (mais on pourra modifier la valeur de obj au
travers de ptr).

Pour résumer : const s’applique toujours au type directement
précédent, sauf si il est au début, auquel cas il s’applique au type
directement suivant.

ICC (partie programmation) – Cours 11 : Pointeurs er références – 21 / 25

Support MOOC

Rappels

Approfondissements
Effets de bords

Pointeurs const

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Pointeurs constants et
pointeurs sur des constantes

Exemple :
int i(2), j(3);
int const* p1(&i);
int* const p2(&i);

cout << i << "," << *p1 << "," << *p2 << endl; // 2,2,2

// *p1 = 5; /* erreur de compilation : on ne peut pas

* modifier au travers de p1 */

*p2 = 5;

cout << i << "," << *p1 << "," << *p2 << endl; // 5,5,5

p1 = &j;
// p2 = &j; /* erreur de compilation : on ne peut pas

* modifier p2 */

cout << i << "," << *p1 << "," << *p2 << endl; // 5,3,5

ICC (partie programmation) – Cours 11 : Pointeurs er références – 22 / 25

Support MOOC

Rappels

Approfondissements
Effets de bords

Pointeurs const

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Pointeurs & références

Déclaration : type* pointeur;
Déclaration/Initialisation :

type* pointeur(adresse);
unique_ptr<type>(new type(valeur));

type& reference(objet);

Adresse d’une variable : &variable
Accès au contenu pointé par un pointeur : *pointeur

Allocation mémoire :
pointeur = new type;

pointeur = new type(valeur);

Libération de la zone mémoire allouée :
delete pointeur (pour les « pointeurs classiques », obligatoire)

ICC (partie programmation) – Cours 11 : Pointeurs er références – 23 / 25

Support MOOC

Rappels

Approfondissements

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Etude de cas

▶ les amis de mes amis . . .

ICC (partie programmation) – Cours 11 : Pointeurs er références – 24 / 25

Support MOOC

Rappels

Approfondissements

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Pour préparer les prochains cours

Plus de nouvelles vidéos à visionner

Les prochain cours :
▶ Présentation du mini-projet (24.11)
▶ Les entrées-sorties (1.12)

ICC (partie programmation) – Cours 11 : Pointeurs er références – 25 / 25

	Support MOOC
	Rappels
	cas d'utilisation
	types de « pointeurs »

	Approfondissements
	Effets de bords
	Pointeurs const

	Etude de cas

