
Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Information, Calcul et Communication
(partie programmation) :

Cours de programmation (C++)
Tableaux dynamiques

Jamila Sam

Laboratoire d’Intelligence Artificielle
Faculté I&C

ICC (partie programmation) – Cours 8 : Tableaux – 1 / 16

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Vidéos (1 à 6), transparents et quiz (vector)

www.coursera.org/learn/initiation-programmation-cpp/

☞ Semaine 5

ICC (partie programmation) – Cours 8 : Tableaux – 2 / 16

https://www.coursera.org/learn/initiation-programmation-cpp/

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Objectifs du cours d’aujourd’hui

▶ Rappels sur les tableaux dynamiques
▶ Concepts centraux
▶ Initialisation
▶ Accès et parcours
▶ Fonctions spécifiques

▶ Compléments sur les types de base
▶ Etude de cas

ICC (partie programmation) – Cours 8 : Tableaux – 3 / 16

Support MOOC

Concepts
centraux
Tableaux
dynamiques

Initialisations

Accès et parcours

Fonctions
spécifiques

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Les vector

taille initiale connue a priori?

non oui

taille pouvant varier
lors de l’utilisation du
tableau?

oui vector (vector)

non (vector) array ()
tableaux « à la C »

Tableau dynamique : collection de données de même type,
c’est-à-dire dont le nombre peut changer au cours du déroulement
du programme,

En C++ : type vector

Nécessite : #include <vector>

(En toute rigueur, vector n’est pas un type, mais un « template ».
Nous verrons les « templates » tard au second semestre).

ICC (partie programmation) – Cours 8 : Tableaux – 4 / 16

Support MOOC

Concepts
centraux
Tableaux
dynamiques

Initialisations

Accès et parcours

Fonctions
spécifiques

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Initialisation d’un tableau dynamique

En C++11, il y a cinq façons d’initialiser un tableau dynamique :
▶ vide

vector<double> tab;

▶ avec un ensemble de valeurs initiales
vector<double> tab({ 2.0, 3.5, 2.6, 3.8, 22.2 });

▶ avec une taille initiale donnée et tous les éléments « nuls »
vector<double> tab(5);

▶ avec une taille initiale donnée et tous les éléments à une
même valeur donnée

vector<double> tab(5, 1.0);

▶ avec une copie d’un autre tableau
vector<int> tab(tab2);

Note : depuis C++17, il n’est pas nécessaire de préciser le type
des éléments si celui-ci peut être déduit du contexte

vector tab(5, 1.0);

ICC (partie programmation) – Cours 8 : Tableaux – 5 / 16

Support MOOC

Concepts
centraux
Tableaux
dynamiques

Initialisations

Accès et parcours

Fonctions
spécifiques

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Accès direct aux éléments d’un tableau

Le i+1ème élément d’un tableau tab est désigné par
tab[i]

Attention !Les indices correspondant aux éléments d’un tableau
de taille taille varient entre 0 et taille-1

Le 1er élément d’un tableau tab précédemment déclaré est donc
tab[0] et son 10e élément est tab[9]

Attention !Il n’y a pas de contrôle de débordement ! !
tab[10000]

Il est impératif que l’élément que vous désigniez existe
effectivement !
Sinon risque de Segmentation Fault !

Exemple (à ne pas suivre !) d’erreur classique :
vector<double> v;
v[0] = 5.4; // NON !!

v[0] n’existe pas encore !

ICC (partie programmation) – Cours 8 : Tableaux – 6 / 16

Support MOOC

Concepts
centraux
Tableaux
dynamiques

Initialisations

Accès et parcours

Fonctions
spécifiques

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Accès aux éléments d’un tableau (2)

Très souvent, on voudra accéder aux éléments d’un tableau en
effectuant une itération sur ce tableau.

Il existe en fait au moins trois façons d’itérer sur un tableau :

▶ avec les itérations sur ensemble de valeurs
for (auto element : tableau)
for (auto& element : tableau)

▶ [C, C++98] avec une itération for « classique » :
for (size_t i(0); i < tableau.size(); ++i)

▶ [C++98] avec des itérateurs (2e semestre)

Lequel choisir ?
▶ à chaque fois que c’est possible : le premier
▶ sinon : le deuxième.

ICC (partie programmation) – Cours 8 : Tableaux – 7 / 16

Support MOOC

Concepts
centraux
Tableaux
dynamiques

Initialisations

Accès et parcours

Fonctions
spécifiques

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Fonctions spécifiques

Quelques fonctions disponibles pour un tableau dynamique
tableau de type vector<type> :

tableau.size() : renvoie la taille de tableau (type de retour :
size_t)

tableau.front() : renvoie une référence au 1er élément
tableau.front() est donc équivalent à tableau[0]

tableau.back() : renvoie une référence au dernier élément.
tableau.back() est donc équivalent à tableau[tableau.size()-1]

tableau.empty() : détermine si tableau est vide ou non
(bool).

tableau.clear() : supprime tous les éléments de tableau (et
le transforme donc en un tableau vide). Pas de (type de) retour.

tableau.pop_back() : supprime le dernier élément de
tableau. Pas de (type de) retour.

tableau.push_back(valeur) : ajoute un nouvel élément de
valeur valeur à la fin de tableau. Pas de (type de) retour.ICC (partie programmation) – Cours 8 : Tableaux – 8 / 16

Support MOOC

Concepts
centraux
Tableaux
dynamiques

Initialisations

Accès et parcours

Fonctions
spécifiques

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Les tableaux multidimensionnels

tableau à plusieurs dimensions : tableau de tableaux...

Le type de base d’un tableau peut être n’importe quel type, y compris
composé. En particulier, le type de base d’un tableau peut être lui même
un tableau.

Exemple :
vector<vector<int>> tab(5, vector<int>(6));

correspond à la déclaration d’un tableau de 5 tableaux de 6 entiers

tab[i] est donc un « vector<int> », c’est-à-dire un tableau
dynamique d’entiers (qui, au départ, en contient 6)

tab[i][j] sera alors le (j +1)-ième élément de ce tableau.

ICC (partie programmation) – Cours 8 : Tableaux – 9 / 16

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Approfondissement

▶ Complément sur les types de base

ICC (partie programmation) – Cours 8 : Tableaux – 10 / 16

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Types élémentaires « avancés »
En plus des types composés, signalons qu’il existe aussi d’autres
types élémentaires, dérivés des types élémentaires présentés.
Trois modificateurs peuvent être utilisés :
▶ pour les int et les double, on peut demander d’avoir une

plus grande précision de représentation à l’aide du
modificateur long, et même long long ().
Exemple : long int nb_etoiles;

▶ pour les int, on peut aussi demander d’avoir une moins
grande précision de représentation à l’aide du modificateur
short.
Exemple : short int nb_cantons;

▶ pour les int (et les char), on peut demander de travailler
avec des données non signées, à l’aide du modificateur
unsigned.
Exemple : unsigned int nb_cacahouetes;

On peut bien sûr combiner :
unsigned long int nb_etoiles;
unsigned short int nb_cantons;

ICC (partie programmation) – Cours 8 : Tableaux – 11 / 16

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Types élémentaires « avancés »

En C++, la taille des types n’est pas spécifiée dans la norme.

Seules indications :
▶ le plus petit type est char
▶ les inégalités suivantes sont toujours vérifiées sur les tailles

mémoires :
char ≤ short int ≤ int ≤ long int
double ≤ long double

Cependant, les tailles généralement utilisées sont

8 bits pour les char
16 bits pour les short int
32 bits pour les long int

En , existe(ro)nt également les types entiers de tailles
définies : int8_t, uint8_t, ..., int64_t, uint64_t

ICC (partie programmation) – Cours 8 : Tableaux – 12 / 16

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Types élémentaires « avancés »

Ces choix typiques conduisent aux bornes suivantes (cf
numeric_limits dans la bibliothèque <limits>, par exemple
numeric_limits<int>::min()) :

type min. max.
char –128 127
unsigned char 0 255
short int –32768 32767
unsigned short int 0 65535
long int –2147483648 2147483647
unsigned long int 0 4294967295

type min. (valeur absolue) max. précision
double 2.22507e–308 1.79769e+308 2.22045e–16
long double 3.3621e–4932 1.18973e+4932 1.0842e–19

Note : « précision » correspond au plus petit nombre x tel que
1+x ̸= 1.

ICC (partie programmation) – Cours 8 : Tableaux – 13 / 16

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Etude de cas

▶ Analyse de données (températures)

ICC (partie programmation) – Cours 8 : Tableaux – 14 / 16

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Etude de cas analyse de données

On souhaite écrire un programme qui fasse des statistiques sur
un ensemble de relevés de températures :

15.1 14.8 13.7 12.6 13.8 14.1 ...

t

(moyenne, températures extrêmes etc.)

ICC (partie programmation) – Cours 8 : Tableaux – 15 / 16

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Pour préparer le prochain cours

▶ Vidéos et quiz du MOOC semaine 5 (suite) :
▶ Tableaux de taille fixe : array [16 :04]

▶ Vidéos et quiz du MOOC semaine 6 :
▶ string : introduction [10 :09]
▶ string : traitements [12 :37]

ICC (partie programmation) – Cours 8 : Tableaux – 16 / 16

	Support MOOC
	Concepts centraux
	Tableaux dynamiques
	Initialisations
	Accès et parcours
	Fonctions spécifiques

	Approfondissement
	Etude de cas

