
Support MOOC

Objectifs

Rappels et
compléments

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Information, Calcul et Communication
(partie programmation) :

Cours de programmation (C++)
Fonctions (2))

Jamila Sam

Laboratoire d’Intelligence Artificielle
Faculté I&C

ICC (partie programmation) – Cours 6 : Fonctions – 1 / 26

Support MOOC

Objectifs

Rappels et
compléments

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Vidéos, Quiz et transparents

www.coursera.org/learn/initiation-programmation-cpp/

☞ Semaine 4

ICC (partie programmation) – Cours 6 : Fonctions – 2 / 26

Support MOOC

Objectifs

Rappels et
compléments

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Objectifs du cours d’aujourd’hui

▶ Suite des rappels sur les fonctions en C++ :
▶ rappel méthodologie
▶ cas particuliers
▶ surcharge
▶ valeurs par défaut
▶ Etude de cas (suite)

▶ Fonctions récursives

ICC (partie programmation) – Cours 6 : Fonctions – 3 / 26

Support MOOC

Objectifs

Rappels et
compléments
Effets de bord

Surcharge

Arguments par
défaut

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Méthodologie pour construire une fonction
➀ clairement identifier ce que doit faire la fonction

☞ ne pas se préoccuper ici du comment, mais bel et bien
du quoi !

(ce point n’est en fait que conceptuel, on n’écrit aucun code ici !)
➁ que doit recevoir la fonction pour faire cela?

☞ identifie les arguments de la fonction
➂ pour chaque argument : doit-il être modifié par la fonction?

(si oui ☞ passage par référence)
Optionnel : se demander si cela à un sens de donner une valeur par
défaut au paramètre correspondant

➃ que doit « retourner » la fonction ☞ type de retour
Se poser ici la question (pour une fonction nommée f) :
est-ce que cela a un sens d’écrire :

z = f(....);
Si oui ☞ le type de z est le type de retour de f
Si non ☞ le type de retour de f est void

➄ (maintenant, et seulement maintenant) Se préoccuper du comment :
c’est-à-dire comment faire ce que doit faire la fonction?
c’est-à-dire écrire le corps de la fonction

ICC (partie programmation) – Cours 6 : Fonctions – 4 / 26

https://www.coursera.org/learn/initiation-programmation-cpp/

Support MOOC

Objectifs

Rappels et
compléments
Effets de bord

Surcharge

Arguments par
défaut

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Effets de bord

Les instructions dans le corps de la fonction dont la finalité n’est
pas le calcul de la valeur de retour, ou qui modifient des objects
extérieurs à la fonction, sont usuellement appelés des effets de
bord.

Exemple :
int memoire(0);
int carre(int a);

main () {
int j;
...
j = carre(5);
...

}

int carre(int a) {
// memorise la derniere valeur utilisee
memoire = a;
return a * a;

}

ICC (partie programmation) – Cours 6 : Fonctions – 5 / 26

Support MOOC

Objectifs

Rappels et
compléments
Effets de bord

Surcharge

Arguments par
défaut

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Effets de bord

Évitez absolument les effets de bords : c’est-à-dire de faire dans
une fonction des modifications sur des objets extérieurs à la
fonctions.

Bonne solution :
int carre(int argument);

main ()
{
int memoire(0);
int j;
...
memoire = 5;
j = carre(memoire);
...

}

int carre(int a)
{

return a * a;
}

ICC (partie programmation) – Cours 6 : Fonctions – 6 / 26

Support MOOC

Objectifs

Rappels et
compléments
Effets de bord

Surcharge

Arguments par
défaut

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

La surcharge des fonctions

En C++, les types des paramètres font partie intégrante de la
définition d’une fonction.

Il est de ce fait possible de définir plusieurs fonctions de même
nom si ces fonctions n’ont pas les mêmes listes de paramètres :
nombre ou types de paramètres différents.

Ce mécanisme, appelé surcharge des fonctions, est très utile
pour écrire des fonctions « sensibles » au type de leurs
paramètres
c’est-à-dire des fonctions correspondant à des traitements de
même nature mais s’appliquant à des entités de types différents.

ICC (partie programmation) – Cours 6 : Fonctions – 7 / 26

Support MOOC

Objectifs

Rappels et
compléments
Effets de bord

Surcharge

Arguments par
défaut

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

La surcharge des fonctions : exemple

void affiche(int x) {
cout << "entier : " << x << endl;

}
void affiche(double x) {
cout << "reel : " << x << endl;

}
void affiche(int x1, int x2) {
cout << "couple : " << x1 << x2 << endl;

}

affiche(1), affiche(1.0) et affiche(1,1) produisent
alors des affichages différents.

Remarque :

void affiche(int x); void affiche(int x1, int x2 = 1);

est interdit ! ☞ ambiguïté

ICC (partie programmation) – Cours 6 : Fonctions – 8 / 26

Support MOOC

Objectifs

Rappels et
compléments
Effets de bord

Surcharge

Arguments par
défaut

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Arguments par défaut

Lors de son prototypage, une fonction peut donner des valeurs
par défaut à ses paramètres.
Il n’est alors pas nécessaire de fournir de valeur à ces paramètres
lors de l’appel de la fonction.

La syntaxe d’un paramètre avec valeur par défaut est :

type identificateur = valeur

Attention : Les paramètres avec valeur par défaut doivent
apparaître en dernier dans la liste des paramètres d’une fonction.

ICC (partie programmation) – Cours 6 : Fonctions – 9 / 26

Support MOOC

Objectifs

Rappels et
compléments
Effets de bord

Surcharge

Arguments par
défaut

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Arguments par défaut : Exemple

Exemple :
void affiche_ligne(char elt, int nb = 5);

main() {
affiche_ligne(’*’);
affiche_ligne(’+’, 8);

}

void affiche_ligne(char elt, int nb) {
for (int i(0); i < nb; ++i) {
cout << elt; }

cout << endl;
}

L’exécution de ce programme produit l’affichage :

++++++++
Lors de l’appel affiche_ligne(’*’), la valeur par défaut 5 est
utilisée ; c’est strictement équivalent à affiche_ligne(’*’, 5)
Lors de l’appel affiche_ligne(’+’, 8), la valeur explicite 8
est utilisée.

ICC (partie programmation) – Cours 6 : Fonctions – 10 / 26

Support MOOC

Objectifs

Rappels et
compléments
Effets de bord

Surcharge

Arguments par
défaut

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Arguments par défaut : Remarques

▶ Les arguments par défaut se spécifient dans le prototype et
non pas dans la définition de la fonction

▶ Lors de l’appel à une fonctions avec plusieurs arguments
ayant des valeurs par défaut, les arguments omis doivent être
les derniers et omis dans l’ordre de la liste des arguments.

Exemple :
void f(int i, char c = ’a’, double x = 0.0);

f(1)→ correct (vaut f(1,’a’,0.0))
f(1,’b’)→ correct (vaut f(1,’b’,0.0))
f(1,3.0)→ incorrect !
f(1„3.0)→ incorrect !
f(1,’b’,3.0)→ correct

ICC (partie programmation) – Cours 6 : Fonctions – 11 / 26

Support MOOC

Objectifs

Rappels et
compléments

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Etude de cas

▶ Méthodologie de développement : tests et debugging

ICC (partie programmation) – Cours 6 : Fonctions – 12 / 26

Support MOOC

Objectifs

Rappels et
compléments

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Fonctions récursives

Principe de l’approche récursive :

ramener le problème à résoudre à un sous-problème,
version simplifiée du problème d’origine.

Attention ! Pour que la résolution récursive soit correcte, il faut
une

condition de terminaison

sinon, on risque une boucle infinie.

ICC (partie programmation) – Cours 6 : Fonctions – 13 / 26

Support MOOC

Objectifs

Rappels et
compléments

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Exemple : Les tours de Hanoï

Jeu des tours de Hanoï :
déplacer une colonne de disques d’un pilier à un autre
▶ en utilisant un seul pilier de transition (c’est-à-dire 3 piliers en

tout)
▶ en ne posant un disque que sur le sol ou sur un disque plus

grand.

ICC (partie programmation) – Cours 6 : Fonctions – 14 / 26

Support MOOC

Objectifs

Rappels et
compléments

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Les tours de Hanoï (2)

Idée : si je sais le faire pour une pile de n disques,
je sais le faire pour n+1 disques

Démonstration :
▶ Déplacer les n disques du haut sur le pilier de transition

(en utilisant la méthode que je connais par hypothèse)
▶ Mettre le dernier disque sur le pilier destination
▶ Redéplacer la tour de n disques du pilier de transition au pilier

destination (en utilisant le pilier initial comme transition).

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��

��
��
��
��

ICC (partie programmation) – Cours 6 : Fonctions – 15 / 26

Support MOOC

Objectifs

Rappels et
compléments

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Les tours de Hanoï (3)

void hanoi(unsigned int n, unsigned int origine,
unsigned int destination,
Jeu jeu)

{
if (n != 0) {
unsigned int auxiliaire(autre(origine, destination));
hanoi(n-1, origine, auxiliaire, jeu);
deplace(jeu[origine], jeu[destination]);
affiche(jeu);
hanoi(n-1, auxiliaire, destination, jeu);

}
}

ICC (partie programmation) – Cours 6 : Fonctions – 16 / 26

Support MOOC

Objectifs

Rappels et
compléments

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Autre exemple

Calculer la somme des n premiers entiers.

Si je sais le faire pour n, je sais le faire pour
n+1 :

S(n+1) = (n+1)+S(n)

Condition d’arrêt :

Je sais le faire pour n = 0 : S(0) = 0

Algorithme :

somme
entrée : n
sortie : S(n)

si n ≤ 0
alors S(n)← 0
sinon

somme
entrée : n−1
sortie : m

S(n)← n+m

ICC (partie programmation) – Cours 6 : Fonctions – 17 / 26

Support MOOC

Objectifs

Rappels et
compléments

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Somme récursive : empilement des appels

ICC (partie programmation) – Cours 6 : Fonctions – 18 / 26

Support MOOC

Objectifs

Rappels et
compléments

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Somme récursive : dépilement des appels

ICC (partie programmation) – Cours 6 : Fonctions – 19 / 26

Support MOOC

Objectifs

Rappels et
compléments

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Somme récursive en C++

int somme(int n) {
if (n <= 0) // condition arret
return 0;

else
return (n + somme(n-1));

}

ICC (partie programmation) – Cours 6 : Fonctions – 20 / 26

Support MOOC

Objectifs

Rappels et
compléments

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Remarque

Notez qu’il est parfois beaucoup mieux d’écrire la méthode sous
une autre forme que la forme récursive.
Si l’on reprend l’exemple de la somme des n premiers entiers :

S(n+1) = (n+1)+S(n)

mais on a aussi (!) :

S(n) =
n

∑
i=1

i

On préfèrera alors programmer le calcul de S(n) comme une
boucle (solution itérative) :

for (int i=1, s=0; i <= n ; i++) {
s += i;

}

plutôt que sous forme récursive !..
ICC : Comparer formellement la vitesse des deux méthodes.

ICC (partie programmation) – Cours 6 : Fonctions – 21 / 26

Support MOOC

Objectifs

Rappels et
compléments

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Remarque (2)

...voire utiliser une expression analytique, lorsqu’on en a une !
Par exemple :

S(n) =
n (n+1)

2
que l’on pourra directement calculer par :

n * (n+1) / 2

Note : on peut toujours “dérécursifier” une fonction

récursive.
C’est-à-dire en trouver un équivalent itératif.
(mais on n’a pas toujours une solution analytique au problème !)

ICC (partie programmation) – Cours 6 : Fonctions – 22 / 26

Support MOOC

Objectifs

Rappels et
compléments

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Les fonctions récursives

Le schéma général d’une fonction récursive est donc le suivant :

type nom(type1 arg1, type2 arg2, ...) {
if (terminaison(arg1, arg2, ...)) {
...

} else {
type1 z; // si nécessaire pour
type2 y1; // des calculs intermédiaires
type2 y2;
...
z = nom(y1, y2, ...)
...

}
}

m
êm

e
nom

ICC (partie programmation) – Cours 6 : Fonctions – 23 / 26

Support MOOC

Objectifs

Rappels et
compléments

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Pour conclure

La solution récursive n’est pas toujours la seule solution et n’est
pas toujours la plus efficace...
...mais elle est parfois beaucoup plus simple et/ou plus pratique
à mettre en œuvre !
Exemples : tris, traitement de structures de données récursives
(e.g., arbres, graphes, . . .), . . .

ICC (partie programmation) – Cours 6 : Fonctions – 24 / 26

Support MOOC

Objectifs

Rappels et
compléments

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Les fonctions

Prototype (à mettre avant toute utilisation de la fonction) :
type nom (type1 arg1, ..., typeN argN [= valN]);
type est void si la fonction ne retourne aucune valeur.

Définition :type nom (type1 arg1, ..., typeN argN)
{

corps
return value;

}

Passage par valeur :
type f(type2 arg);
arg ne peut pas être modifié par f

Passage par référence :
type f(type2& arg);
arg peut être modifié par f

Surcharge (exemple) :
void affiche (int arg);
void affiche (double arg);
void affiche (int arg1, int arg2);

ICC (partie programmation) – Cours 6 : Fonctions – 25 / 26

Support MOOC

Objectifs

Rappels et
compléments

Etude de cas

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Pour préparer le prochain cours

Vidéos et quiz du MOOC semaine 5 :
▶ Tableaux : introduction [09 :34]
▶ Tableaux : déclaration et initialisation des vector [07 :44]
▶ Tableaux : utilisation des vector [15 :44]
▶ Tableaux : exemples simples (vector) [06 :53]
▶ Tableaux : fonctions spécifiques vector [11 :50]

ICC (partie programmation) – Cours 6 : Fonctions – 26 / 26

	Support MOOC
	Objectifs
	Rappels et compléments
	Effets de bord
	Surcharge
	Arguments par défaut

	Etude de cas
	Fonctions récursives

