Information, Calcul et Communication
(partie programmation) :

Cours de programmation (C++)
Fonctions (2))

Jamila Sam

Laboratoire d’Intelligence Artificielle
Faculté 1&C

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

ICC (partie programmation) — Cours 6 : Fonctions — 1/26

Objectifs du cours d’aujourd’hui

Objectifs

> Suite des rappels sur les fonctions en C++ :

> rappel méthodologie
> cas particuliers

» surcharge

> valeurs par défaut
> Etude de cas (suite)

» Fonctions récursives

©EPFL 2025-26

Jamila Sam

& Jean-Cédric Chappelier
cpre-
cPFL

ICC (partie programmation) — Cours 6 : Fonctions — 3/26

swowoce— \idéos, Quiz et transparents

WWw.coursera.org/learn/initiation-programmation-cpp/

= Semaine 4

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

-pr-
= P'- L ICC (partie programmation) — Cours 6 : Fonctions — 2/26

Méthodologie pour construire une fonction
Rappels et @ clairement identifier ce que doit faire la fonction

compléments ,
it de borg w Ne pas se préoccuper ici du comment, mais bel et bien
du quoi!
(ce point n’est en fait que conceptuel, on n’écrit aucun code ici!)
@ que doit recevoir la fonction pour faire cela ?
s identifie les arguments de la fonction
® pour chaque argument : doit-il étre modifié par la fonction ?
(si oui i passage par référence)
Optionnel : se demander si cela a un sens de donner une valeur par
défaut au paramétre correspondant
@ que doit « retourner » la fonction s type de retour
Se poser ici la question (pour une fonction nommée f£) :
est-ce que cela a un sens d’écrire :
z = f£(....);
Sioui = letype de z est le type de retour de
Sinon s le type de retour de £ est void
® (maintenant, et seulement maintenant) Se préoccuper du comment :
oeprL 202525 c’est-a-dire comment faire ce que doit faire la fonction ?
c’est-a-dire écrire le corps de la fonction

& Jean-Cédric Chappelier
mpre
(= Pi' L ICC (partie programmation) — Cours 6 : Fonctions — 4/26

https://www.coursera.org/learn/initiation-programmation-cpp/

Effets de bord

Effetsde bord Les instructions dans le corps de la fonction dont la finalité n’est
e pas le calcul de la valeur de retour, ou qui modifient des objects
extérieurs a la fonction, sont usuellement appelés des effets de
bord.

Arguments par

défau

Exemple :

int memoire (0);
int carre (int a);

main () |
int j;

j = carre(5);
}

int carre (int a) {
// memorise la derniere valeur utilisee
memoire = a;
return a * a;
©EPFL 2025-26 }

Jamila Sam
& Jean-Cédric Chappelier

c=PrL

ICC (partie programmation) — Cours 6 : Fonctions — 5/26

La surcharge des fonctions

Effets de bord
Surcharge
Arguments par
défau

En C++, les types des parametres font partie intégrante de la
définition d’une fonction.

Il est de ce fait possible de définir plusieurs fonctions de méme
nom si ces fonctions n'ont pas les mémes listes de parametres :
nombre ou types de paramétres différents.

Ce mécanisme, appelé surcharge des fonctions, est trés utile
pour écrire des fonctions « sensibles » au type de leurs
parameétres

c’est-a-dire des fonctions correspondant a des traitements de
méme nature mais s’appliquant a des entités de types différents.

©EPFL 2025-26

Jamila Sam

& Jean-Cédric Chappelier
cpre-
cPFL

ICC (partie programmation) — Cours 6 : Fonctions — 7/26

©EPFL 2025-26
Jamila Sam

& Jean-Cédric Chappelier

c=PrL

Effets de bord
Surcharge
Arguments par

défau

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Effets de bord

Evitez absolument les effets de bords : c’est-a-dire de faire dans
une fonction des modifications sur des objets extérieurs a la
fonctions.

Bonne solution :

int carre (int argument);

main ()
{

int memoire (0);

int j;
memoire = 5;
j = carre (memoire);

}

int carre (int a)
{
return a * a;

}

ICC (partie programmation) — Cours 6 : Fonctions — 6/26

La surcharge des fonctions : exemple

void affiche (int x) {
cout << "entier : " << x << endl;
}
void affiche (double x) {
cout << "reel : " << x << endl;
}
void affiche (int x1, int x2) {
cout << "couple : " << x1 << x2 << endl;

}

affiche(1l),affiche(1.0) etaffiche(1,1) produisent
alors des affichages différents.

Remarque :
void affiche(int x); wvoid affiche(int x1, int x2 = 1);
est interdit ! i ambiguité

ICC (partie programmation) — Cours 6 : Fonctions — 8/26

Effets de bord
Surcharge
Arguments par
défaut

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Effets de bord
Surcharge
Arguments par
défaut

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Arguments par défaut

Lors de son prototypage, une fonction peut donner des valeurs
par défaut a ses parametres.

Il n'est alors pas nécessaire de fournir de valeur a ces paramétres
lors de I'appel de la fonction.

La syntaxe d’'un paramétre avec valeur par défaut est :
type identificateur = valeur

Attention : Les parametres avec valeur par défaut doivent
apparaitre en dernier dans la liste des paramétres d’'une fonction.

ICC (partie programmation) — Cours 6 : Fonctions — 9/26

Arguments par défaut : Remarques

» Les arguments par défaut se spécifient dans le prototype et
non pas dans la définition de la fonction
» Lors de I'appel a une fonctions avec plusieurs arguments

ayant des valeurs par défaut, les arguments omis doivent étre
les derniers et omis dans I'ordre de la liste des arguments.

Exemple :
void f(int i, char ¢ = "a’, double x = 0.0);
) — correct (vaut £(1,7a’,0.0))

f(1

£(1,’b’ —>correct(vautf(l,'b’,0.0))
£(1,3.) — incorrect!

£(1,3.0) — incorrect!

f(1,’b’,3.0) — correct

ICC (partie programmation) — Cours 6 : Fonctions — 11/26

Effets de bord
Surcharge

Arguments par
défaut

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Arguments par défaut : Exemple

Exemple :

void affiche_ligne(char elt, int nb = 5);

main () |
affiche_ligne (' *");
affiche_ligne('+’, 8);
}

void affiche_ligne(char elt, int nb) {
for (int i(0); i < nb; ++1i) {
cout << elt; }
cout << endl;

}

Lexécution de ce programme produit I'affichage :

* Kk kK Kk

4

Lors de l'appel affiche_ligne (’ =’), la valeur par défaut 5 est
utilisée ; c’est strictement équivalenta affiche_ligne ('’ «’, 5)
Lors de I'appel affiche_ligne (’ +’ , la valeur explicite 8
est utilisée.

ICC (partie programmation) — Cours 6 : Fonctions — 10/26

Etude de cas

» Méthodologie de développement : tests et debugging

ICC (partie programmation) — Cours 6 : Fonctions — 12/26

Fonctions récursives

Fonctions Fonctions
récursives récursives

Principe de I'approche récursive :

ramener le probleme a résoudre a un sous-probleme,
version simplifiée du probleme d’origine.

Attention ! Pour que la résolution récursive soit correcte, il faut
une
condition de terminaison

sinon, on risque une boucle infinie.

©EPFL 2025-26
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier

c=PrL

ICC (partie programmation) — Cours 6 : Fonctions — 13/26

Les tours de Hanoi (2)

Idée : sije sais le faire pour une pile de n disques,
Fonctions je sais le faire pour n+ 1 disques Fonctions
recursives L, . recursives
Démonstration :

» Déplacer les n disques du haut sur le pilier de transition
(en utilisant la méthode que je connais par hypothése)

> Mettre le dernier disque sur le pilier destination

» Redéplacer la tour de n disques du pilier de transition au pilier
destination (en utilisant le pilier initial comme transition).

©EPFL 2025-26

Jamila Sam Jamila Sam

& Jean-Cédric Chappelier
cpre-
cPFL

ICC (partie programmation) — Cours 6 : Fonctions — 15/26

©EPFL 2025-26

& Jean-Cédric Chappelier

c=PrL

©EPFL 2025-26

& Jean-Cédric Chappelier

c=PrL

Exemple : Les tours de Hanoi

Jeu des tours de Hanoi :
déplacer une colonne de disques d’un pilier & un autre
» en utilisant un seul pilier de transition (c’est-a-dire 3 piliers en
tout)

» en ne posant un disque que sur le sol ou sur un disque plus
grand.

ICC (partie programmation) — Cours 6 : Fonctions — 14 /26

Les tours de Hanoi (3)

void hanoi (unsigned int n, unsigned int origine,
unsigned int destination,
Jeu jeu)

if (n !'= 0) {
unsigned int auxiliaire (autre(origine, destination));
hanoi (n-1, origine, auxiliaire, jeu);
deplace (jeulorigine], jeul[destination]);
affiche (jeu);
hanoi (n-1, auxiliaire, destination, jeu);

ICC (partie programmation) — Cours 6 : Fonctions — 16 /26

Autre exemple

Somme récursive : empilement des appels

Fécurshes Algorithme : Fecurshes
Calculer la somme des n premiers entiers. somme P M M
N entrée : n somme somme somme somme
Si je sais le faire pour n, je sais le faire pour tie: S entrée : 3 entrée : 2 entrée : 1 entrée : 0
n+1 - sortie : (n) sortie : S(3) sortie : 5(2) sortie : S(1) sortie : $(0)
' sin<0 §3<0 s2<0 s1<0 §0<0
- = alors S(3) alors S(2) alors S(1) ~0 alors S(0) =0
alors S(n) «~0 sinon sinon sinon sinon
S(n+ 1) = (n+ 1) + S(n) sinon somme . somme - somme : | somme .
entrée : entrée : entrée : entrée : —
somme sortie : m sortie : m sortie : m ‘ sortie : m
Condition d’arrét : entrée :n—1 SB3)=3+m S@)=2+m SWy=1+m S0)=0+m
. , sortie : m
Je sais le faire pour n=0: S§(0)=0
S(n)+n+m

©EPFL 2025-26 ©EPFL 2025-26

Jamila Sam Jamila Sam

& Jean-Cédric Chappelier & Jean-Cédric Chappelier
cpre- cpre-
cPFL cPFL

ICC (partie programmation) — Cours 6 : Fonctions — 17/26 ICC (partie programmation) — Cours 6 : Fonctions — 18 /26

Somme récursive : dépilement des appels Somme récursive en C++

Fanti(_Jns Fanti(_Jns
recursives recursives
somme Q somme somme
entrée : 3 entrée : 2 entrée : 1 entrée : 0
sortie : 6 sortie : 3 sortie : 1 sortie : 0 int somme (int n) {
si3<0 si2 £0 sil sio £0 if (n <= 0) // condition arret
alors S(3) ~0 aldrs S(2) ~0 aldrs S(0) =0 return 0;
sinon sinon sinon sinon else
somme | / somme | / / return (n + somme (n-1));
entrée : 2 entrée : 14/ entrée : 0 }
sortie : 3 sortie : 1 sortie : 0
53)=3+3 5(2)=2+1 S5(1)=1+0

©EPFL 2025-26 ©EPFL 2025-26

Jamila Sam Jamila Sam

& Jean-Cédric Chappelier & Jean-Cédric Chappelier
cpre- cpre-
cPFL cPFL

ICC (partie programmation) — Cours 6 : Fonctions — 19/26 ICC (partie programmation) — Cours 6 : Fonctions — 20 /26

Remarque

Notez qu’il est parfois beaucoup mieux d’écrire la méthode sous
Fonctions une autre forme que la forme récursive.
Si I'on reprend I'exemple de la somme des n premiers entiers :

S(n+1)=(n+1)+S(n)
mais on a aussi (!) :

S(n):zn;i

On préférera alors programmer le calcul de S(n) comme une
boucle (solution itérative) :

for (int i=1, s=0; i <= n ; i++) {
s += i;

}

plutdt que sous forme récursive |..
ICC : Comparer formellement la vitesse des deux méthodes.

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

ICC (partie programmation) — Cours 6 : Fonctions — 21/26

Les fonctions récursives

Fontions Le schéma général d’'une fonction récursive est donc le suivant :

récursives

type, nom(typel argl, type2 arg2, ...) |
{f (terminaison(argl, arg2, ...)) {

else {

typel z; // si nécessaire pour
type2 yl; //
ypez yz;

des calculs intermédiaires

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPrL

ICC (partie programmation) — Cours 6 : Fonctions — 23/26

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Remarque (2)

...voire utiliser une expression analytique, lorsqu’on en a une!
Par exemple :
n(n+1)
2
que 'on pourra directement calculer par :

S(n) =

n + (n+l) / 2

Note : on peut toujours “dérécursifier’ une fonction

récursive.
C’est-a-dire en trouver un équivalent itératif.
(mais on n’a pas toujours une solution analytique au probléme!)

ICC (partie programmation) — Cours 6 : Fonctions — 22/26

Pour conclure

La solution récursive n’est pas toujours la seule solution et n’est
pas toujours la plus efficace...

...mais elle est parfois beaucoup plus simple et/ou plus pratique
a mettre en ceuvre!

Exemples : tris, traitement de structures de données récursives
(e.g., arbres, graphes, ...), ...

ICC (partie programmation) — Cours 6 : Fonctions — 24 /26

e

‘" Les fonctions %

Prototype (a mettre avant toute utilisation de la fonction) :
Fonctions type nom (typel argl, ..., typeN argN [= valN]);
récursives type est void si la fonction ne retourne aucune valeur.

Définition + ype nom (typel argl, ..., typeN argN)
{
corps
return value;

Passage par valeur :
type f (type2 arg);
arg ne peut pas étre modifié par £

Passage par référence :
type f (type2& arg);
arg peut étre modifié par £

Surcharge (exemple) :

void affiche (int arg);
©EPFL 2025-26 void affiche (double arg);
svemdaocnmainr vOid affiche (int argl, int arg2);

c=PrL

ICC (partie programmation) — Cours 6 : Fonctions — 25/26

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Pour préparer le prochain cours

Vidéos et quiz du MOOC semaine 5 :
» Tableaux : introduction [09 :34]
Tableaux : déclaration et initialisation des vector [07 :44]
Tableaux : utilisation des vector [15 :44]
Tableaux : exemples simples (vector) [06 :53]

>
>
>
» Tableaux : fonctions spécifiques vector [11 :50]

ICC (partie programmation) — Cours 6 : Fonctions — 26 /26

	Support MOOC
	Objectifs
	Rappels et compléments
	Effets de bord
	Surcharge
	Arguments par défaut

	Etude de cas
	Fonctions récursives

