Support MOOC
Objectifs

Rappels et
compléments

Etude de cas

Fonctons Information, Calcul et Communication
(partie programmation) :

Cours de programmation (C++)
Fonctions (2))

Jamila Sam

Laboratoire d’Intelligence Artificielle
Faculté 1&C

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 6 : Fonctions — 1/26

Support MOOC Vidéos, Quiz et transparents

www.coursera.org/learn/initiation—-programmation-cpp/

= Semaine 4

(©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 6 : Fonctions — 2/26

https://www.coursera.org/learn/initiation-programmation-cpp/

Objectifs du cours d’aujourd’hui

Objectifs

> Suite des rappels sur les fonctions en C++ :
» rappel méthodologie
> cas particuliers
»> surcharge
> valeurs par défaut
» Etude de cas (suite)

» Fonctions récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L ICC (partie programmation) — Cours 6 : Fonctions — 3/26

Méthodologie pour construire une fonction

Ragpes ot @ clairement identifier ce que doit faire la fonction
= Ne pas se préoccuper ici du comment, mais bel et bien
du quoi!
(ce point n’est en fait que conceptuel, on n’écrit aucun code ici!)
@ que doit recevoir la fonction pour faire cela?
= identifie les arguments de la fonction
® pour chaque argument : doit-il étre modifié par la fonction ?
(si oui = passage par référence)
Optionnel : se demander si cela a un sens de donner une valeur par
défaut au parametre correspondant
@ que doit « retourner » la fonction = type de retour
Se poser ici la question (pour une fonction nommée f) :
est-ce que cela a un sens d’écrire :
z = f(....);
Sioui s letype de z est le type de retour de £
Sinon s le type de retour de £ est void
® (maintenant, et seulement maintenant) Se préoccuper du comment :
eEPFL 202526 c’est-a-dire comment faire ce que doit faire la fonction ?

Jamila Sam

& e Cesr Chapeter c’est-a-dire écrire le corps de la fonction
E P'— L ICC (partie programmation) — Cours 6 : Fonctions — 4 /26

Effets de bord

Efetsde bord Les instructions dans le corps de la fonction dont la finalité n’est

e pas le calcul de la valeur de retour, ou qui modifient des objects

extérieurs a la fonction, sont usuellement appelés des effets de
bord.

Exemple :

int memoire (0);
int carre(int a);

main () {
int j;
j = carre(5);

}

int carre(int a) {
// memorise la derniere valeur utilisee
memoire = aj;
return a * aj;
©EPFL 2025-26 }

Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 6 : Fonctions — 5/26

Effets de bord

Efetscebore Evitez absolument les effets de bords : c’est-a-dire de faire dans

une fonction des modifications sur des objets extérieurs a la
o fonctions.

Bonne solution :

int carre(int argument);

main ()
{
int memoire (0);
int j;
memoire = 5;
j = carre(memoire);
}
int carre(int a)
{
return a * aj;
©EPFL 2025-26 }
Jamila Sam
& Jean-Cédric Chappelier
-
=PFL

ICC (partie programmation) — Cours 6 : Fonctions — 6/26

La surcharge des fonctions

En C++, les types des parameétres font partie intégrante de la
définition d’une fonction.

Il est de ce fait possible de définir plusieurs fonctions de méme
nom si ces fonctions n'ont pas les mémes listes de parametres :
nombre ou types de paramétres différents.

Ce mécanisme, appelé surcharge des fonctions, est tres utile
pour écrire des fonctions « sensibles » au type de leurs
paramétres

c’est-a-dire des fonctions correspondant a des traitements de
méme nature mais s’appliquant a des entités de types différents.

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L ICC (partie programmation) — Cours 6 : Fonctions — 7 /26

Effets de bord
Surcharge
Arguments pa
défaut

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

La surcharge des fonctions : exemple

void affiche (int x) {
cout << "entier : " << x << endl;
}
void affiche (double x) {
cout << "reel : " << x << endl;
}
void affiche (int x1, int x2) {
cout << "couple : " << xl << x2 << endl;

}

affiche(l),affiche(1.0) etaffiche(1,1) produisent
alors des affichages différents.

Remarque :
void affiche (int x); wvoid affiche(int x1, int x2 = 1);
est interdit! = ambiguité

ICC (partie programmation) — Cours 6 : Fonctions — 8/26

Arguments par défaut

Arguments par
défaut

Lors de son prototypage, une fonction peut donner des valeurs
par défaut a ses parametres.

Il n'est alors pas nécessaire de fournir de valeur a ces paramétres
lors de I'appel de la fonction.

La syntaxe d’un parametre avec valeur par défaut est :

type identificateur = valeur

Attention : Les parameétres avec valeur par défaut doivent
apparaitre en dernier dans la liste des parameétres d’une fonction.

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPrL

ICC (partie programmation) — Cours 6 : Fonctions — 9/26

Arguments par défaut : Exemple

Exemple :
void affiche_ligne (char elt, int nb = 5);

Surcl

Arguments par
défaut

main () {
affiche_ligne (' *");
affiche_ligne('+’, 8);
}

void affiche_ligne (char elt, int nb) {
for (int 1(0); i < nb; ++1) {
cout << elt; }
cout << endl;

}

Lexécution de ce programme produit I'affichage :

* ok ok kK

++++++++

Lors de I'appel affiche_ligne (’ =’), la valeur par défaut 5 est

utilisée ; c’est strictement équivalent a affiche_ligne (" *’, 5)
oEPEL 202525 Lors de 'appel affiche_ligne (' +’, 8), lavaleur explicite 8
wancemic craeier €51 UtiliSEE.

-
E P'— L ICC (partie programmation) — Cours 6 : Fonctions — 10/26

Arguments par défaut : Remarques

Effets de bord
Surcharge

Arguments par

deiaut > Les arguments par défaut se spécifient dans le prototype et
non pas dans la définition de la fonction

» Lors de I'appel a une fonctions avec plusieurs arguments
ayant des valeurs par défaut, les arguments omis doivent étre
les derniers et omis dans I'ordre de la liste des arguments.

Exemple :
void f(int i, char ¢ = "a’, double x = 0.0);

) — correct (vaut £(1,7a’,0.0))
,"b’) — correct (vaut £ (1,’b’,0.0))
3.0) — incorrect!

»3.0) — incorrect!

,"b’,3.0) — correct

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 6 : Fonctions — 11/26

Etude de cas

Etude de cas

> Meéthodologie de développement : tests et debugging

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 6 : Fonctions — 12/26

Fonctions récursives

Fonctions
récursives

Principe de I'approche récursive :

ramener le probléme a résoudre a un sous-probleme,
version simplifiée du probleme d’origine.

Attention ! Pour que la résolution récursive soit correcte, il faut
une
condition de terminaison

sinon, on risque une boucle infinie.

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 6 : Fonctions — 13/26

Exemple : Les tours de Hanoi

Fonctions Jeu des tours de Hanoi :
déplacer une colonne de disques d’un pilier a un autre
> en utilisant un seul pilier de transition (c’est-a-dire 3 piliers en
tout)
»> en ne posant un disque que sur le sol ou sur un disque plus
grand.

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

E PF L ICC (partie programmation) — Cours 6 : Fonctions — 14 /26

Les tours de Hanoi (2)

Idée : sije sais le faire pour une pile de n disques,
Fonctons je sais le faire pour n+ 1 disques
Démonstration :
» Déplacer les n disques du haut sur le pilier de transition
(en utilisant la méthode que je connais par hypothese)
> Mettre le dernier disque sur le pilier destination

» Redéplacer la tour de n disques du pilier de transition au pilier
destination (en utilisant le pilier initial comme transition).

S S S o R T X T R TTo]
B S

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L ICC (partie programmation) — Cours 6 : Fonctions — 15/26

Les tours de Hanoi (3)

Eonctipns
recursives
void hanoi (unsigned int n, unsigned int origine,
unsigned int destination,
Jeu jeu)
{
if (n !'= 0) {
unsigned int auxiliaire (autre(origine, destination));
hanoi (n-1, origine, auxiliaire, jeu);
deplace (jeulorigine], jeu[destination]);
affiche (jeu);
hanoi (n-1, auxiliaire, destination, jeu);
}
}
©EPFL 2025-26
Jamila Sam

& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 6 : Fonctions — 16 /26

Autre exemple

Fonctions

récursives A|gOI’Ithme .
Calculer la somme des n premiers entiers. somme
Sii is le fai . is le fai entrée : n
i je sais le faire pour n, je sais le faire pour sortie : S(n)
n+1:
sin<0
alors S(n) + 0
S(n+1)=(n+1)+3S(n) sinon
somme
Condition d’arrét : entrée :n—1
. . sortie : m
Je sais le faire pour n=0: S(0)=0 | sorte.m |
S(n)«~n+m

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPrL

ICC (partie programmation) — Cours 6 : Fonctions — 17/26

Somme récursive : empilement des appels

Fonctions
recursives
entrée : 3 entrée : 2 entrée : 1 entrée : 0
sortie : 5(3) sortie : 5(2) sortie : S(1) sortie : 5(0)
si3<0 si2<0 sil<o0 sio<o0
alors 5(3)/£ 0 alors 5(2) £ 0 alors 5(1)/£ 0 alors 5(0) = 0
somme somme | somme | somme
entrée : 2 entrée : 1 entrée : 0 entrée : —1
sortie : m sortie : m sortie : m sortie : m
53)=3+m S(2)=2+m S5(1)=1+m S5(0)=0+m
©EPFL 2025-26
Jamila Sam

& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 6 : Fonctions — 18/26

Fonctions
récursives

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

pai'

'

Somme récursive : dépilement des appels

e

somme somme somme somme
entrée : 3 entrée : 2 entrée : 1 entrée : 0
sortie : 6 sortie : 3 sortie : 1 sortie : 0
si3<0 si2 X0 sil <0 si0 X0
alors S(3) ajdrs S(2) £ 0 rs S(1) ~0 ajdrs S(0) =0
sinon sinon sinon sinon

somme / somme | somme /

entrée : entrée : 1 entrée : 0]

sortie : 3 sortie : 1 sortie : 0
53)=3+3 S5(12)=2+1 S(1)=1+0

ICC (partie programmation) — Cours 6 : Fonctions — 19/26

Somme récursive en C++

Eonctipns
recursives
int somme (int n) {
if (n <= 0) // condition arret
return 0;
else
return (n + somme (n-1));
}
©EPFL 2025-26
Jamila Sam

& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 6 : Fonctions — 20/26

Remarque

Notez qu’il est parfois beaucoup mieux d’écrire la méthode sous
Fonciions une autre forme que la forme récursive.
Si I'on reprend I'exemple de la somme des n premiers entiers :

S(n+1)=(n+1)+S(n)

mais on a aussi () :

(ngE

S(n) =
1

On préférera alors programmer le calcul de S(n) comme une
boucle (solution itérative) :

for (int i=1, s=0; i <= n ; 1i++) {
s += 1i;

}

plut6t que sous forme récursive !..
GEPFL 202520 ICC : Comparer formellement la vitesse des deux méthodes.

Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L ICC (partie programmation) — Cours 6 : Fonctions — 21/26

Remarque (2)

Fononons. ...voire utiliser une expression analytique, lorsqu’on en a une!
Par exemple :
n(n+1
sty = ")

que I'on pourra directement calculer par :

n x (n+l) / 2

Note : on peut toujours “dérécursifier’ une fonction

récursive.
C’est-a-dire en trouver un équivalent itératif.
(mais on n’a pas toujours une solution analytique au probléme!)

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L ICC (partie programmation) — Cours 6 : Fonctions — 22/26

Les fonctions récursives

Fonctions Le schéma général d’une fonction récursive est donc le suivant :

récursives

type, nom(typel argl, type2 arg2, ...) {
{f (terminaison(argl, arg2, ...)) {

a PO

% else {

[©) typel z; // si nécessaire pour

90 type2 yl; // des calculs intermédiaires
3 pel y2;

z =’nom(yl, y2, ...)

-

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 6 : Fonctions — 23 /26

Pour conclure

Fonctions
récursives

La solution récursive n’est pas toujours la seule solution et n’est
pas toujours la plus efficace...

...mais elle est parfois beaucoup plus simple et/ou plus pratique
a mettre en ceuvre !

Exemples : tris, traitement de structures de données récursives
(e.q., arbres, graphes, ...), ...

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPrL

ICC (partie programmation) — Cours 6 : Fonctions — 24 /26

Les fonctions z

Prototype (a mettre avant toute utilisation de la fonction) :
Fonctions type nom (typel arg}, ..., typeN argN [= valN]);
type est void sila fonction ne retourne aucune valeur.

Définition '+ ype nom (typel argl, ..., typeN argN)
{
corps
return value;

Passage par valeur : Passage par référence :
type f(type2 arqg); type f(type2& arqg);
arg ne peut pas étre modifié par £ | arg peut étre modifié par £

Surcharge (exemple) :
void affiche (int arg);

GEPFL 202525 void affiche (double arqg);
& Joar G Crappoer void affiche (int argl, int arg2?);
=PFL

ICC (partie programmation) — Cours 6 : Fonctions — 25/26

Pour préparer le prochain cours

Fonctions
récursives

Vidéos et quiz du MOOC semaine 5 :

>

>
>
>
>

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Tableaux :
Tableaux :
Tableaux :
Tableaux :
: fonctions spécifiques vector [11 :50]

Tableaux

introduction [09 :34]

déclaration et initialisation des vector [07 :44]
utilisation des vector [15 :44]

exemples simples (vector) [06 :53]

ICC (partie programmation) — Cours 6 : Fonctions — 26 /26

	Support MOOC
	Objectifs
	Rappels et compléments
	Effets de bord
	Surcharge
	Arguments par défaut

	Etude de cas
	Fonctions récursives

