==nvoce Vjdéos, transparents et quiz

Information, Calcul et Communication
(partie programmation) :

Fonctions

www.coursera.org/learn/initiation-programmation-cpp/

Jamila Sam w Semaine 4
(jusqu’a "Méthodologie")

Laboratoire d’Intelligence Artificielle

Faculté 1&C
©EPFL 2025-26 ©EPFL 2025-26
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier
EPFL ICC (partie programmation) — Cours 5 : Fonctions — 1/19 EPFL ICC (partie programmation) — Cours 5 : Fonctions — 2/19
o Notion de reutilisabilite o Fonction (en programmation)
centraun. centraun.
fonction = portion de programme réutilisable ou importante en soi
Un bon langage de programmation doit donc fournir des moyens o)) o o
pour permettre la réutilisation de portions de programmes. Plus précisément, une fonction est un objet logiciel caractérisé par :
un corps : le programme a réutiliser/mettre en évidence et qui
= les fonctions a justifié la création de la fonction;
o . . _ un nom : référence a I'objet « fonction » lui-méme, indiquée
Pourquoi ne jamais dupliquer du code (copier/coller) : lors de sa création;
> cela rend la mise a jour de ce programme plus difficile : des paramétres : (les « entrées », on dit aussi « arguments »)
reporter chaque modification de P dans chacune des copies ensemble de références a des objets définis a
dep I'extérieur de la fonction dont les valeurs sont

> cela réduit fortement la compréhension du programme potentiellement utilisées dans le corps de la

résultant fonction;

» cela augmente inutilement la taille du programme un type et une valeur de retour (la « sortie ») : le type est indiqué
dans le prototype et la valeur est indiquée dans le
corps par la commande return.

©EPFL 2025-26 ©EPFL 2025-26

Jamila Sam Jamila Sam

& Jean-Cédric Chappelier & Jean-Cédric Chappelier
EPFL ICC (partie programmation) — Cours 5 : Fonctions — 3/19 EPFL

ICC (partie programmation) — Cours 5 : Fonctions — 4/19

https://www.coursera.org/learn/initiation-programmation-cpp/

Concepts
centraux

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Concepts
centraux

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Les « 3 facettes » d’une fonction

Concepts
centraux

» Résumé / Contrat (« prototype »)
» Création / construction (« définition »)
» Utilisation (« appel »)

programmeur
concepteur/développeur

programmeur
utilisateur

accord

>

appel prototype définition

z=f (x,y) double f (double,double); double f (double a,double b)

{
}

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

ICC (partie programmation) — Cours 5 : Fonctions — 5/19

€D Prototypage (2)

Concepts
centraux

Dans les prototypes des fonctions, les identificateurs des
parametres sont optionnels.
En fait, ils ne servent qu’a rendre le prototype plus lisible.

Dans I'exemple précédent, la fonction moyenne peut donc
également étre prototypée par :

double moyenne (double, double);

Conseil : Ecrivez cependant les noms des paramétres dans le
prototypage des fonctions et choisissez des noms pertinents.
Cela augmente la lisibilité de votre code (et donc facilite sa
maintenance).

©EPFL 2025-26

Jamila Sam

& Jean-Cédric Chappelier
cpre-
cPFL

ICC (partie programmation) — Cours 5 : Fonctions — 7/19

using namespace std;

Exemple complet

#include <iostream>

prototype

(?ouble moyenne (double nombre_1, double nombre_2)£)

int main ()
{

double notel (0.0), note2(0.0);

cout << "Entrez vos deux notes " << endl;
cin >> notel >> note2;
cout << "Votre movenne est "
<<(moyenne (notel, note2{><< endl;
return 07 appe|
}
double moyenne (double x, double vy)
{ &finition

return (x + vy) / 2.0;

}

ICC (partie programmation) — Cours 5 : Fonctions — 6/19

Prototypage par la définition €@

Si la définition d’'une fonction est faite avant son utilisation, cette
définition peut également servir de prototype.

Dans ce cas, le prototypage est fait en méme temps que la
définition.

Par exemple, on peut directement écrire :

Conseil : il est cependant préférable de prototyper avant de définir
une fonction.

On pourra, par la suite par exemple déplacer la définition de la
fonction, ou bien écrire d’autres fonctions utilisant cette fonction,
etc...

ICC (partie programmation) — Cours 5 : Fonctions — 8/19

Concepts
centraux

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Concepts
centraux

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Evaluation d’un appel de fonction

Pour une fonction définie par

typeR f(typel x1, type2 x2, ..., typeN xN) {
I'évaluation de I'appel
f(argl, arg2, ..., argNh)

s’effectue de la fagon suivante :
1. les expressions argl, arg2, ..., argh sont évaluées (dans
un ordre quelconque)

2. les valeurs correspondantes sont affectées aux parametres
x1, x2, ..., xNde la fonction £ (variables locales au corps de 1)

Concrétement, ces deux premiéeres étapes reviennent a faire :
x1l = argl,x2 = arg2,.., xN = argN

3. le programme correspondant au corps de la fonction £ est
exécute

4. I'expression suivant la premiére commande return est
évaluée et retournée comme résultat de de I'appel.

5. cette valeur remplace I'expression de I'appel, i.e. I'expression
f(argl, arg2, ..., argNh)

ICC (partie programmation) — Cours 5 : Fonctions — 9/19

e

Portée / Appel Z

int Xz ;

}
int f(int x) ;
int z
intm‘m
intx,y;
...ﬂ¥)... ,,"
yoN

ICC (partie programmation) — Cours 5 : Fonctions — 11/19

Evaluation d’un appel de fonction (2)

Concepts
centraux

Les étapes @ et @ n'ont bien s(r pas lieu pour une fonction sans
argument.

Les étapes @ et ® n'ont bien s(r pas lieu pour une fonction sans
valeur de retour (void).

Létape @ n’a pas lieu lors d’un passage par référence (voir plus
loin).

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cps
= P' L ICC (partie programmation) — Cours 5 : Fonctions — 10/19

Le passage des arguments

Concepts
centraux

On distingue en général 2 types de passages d’arguments :

passage par valeur :

La variable locale associée a un argument passé par valeur
correspond a une copie de I'argument (i.e. un objet distinct mais
de méme valeur littérale).

Les modifications effectuées a l'intérieur de la fonction ne sont
donc pas répercutées a I'extérieur de la fonction.

passage par référence :

La variable locale associée a un argument passé par référence
correspond a une référence sur I'objet associé a 'argument lors
de I'appel.

Une modification qui est effectuée a l'intérieur de la fonction peut
alors se répercuter a l'extérieur de la fonction.

Le passage par référence peut étre explicitement sélectionné en

cePrL 22525 définissant le type des parameétres de la fonction comme étant des
e CatcCraeter références (identifiées par le symbole &, par exemple doubles x).
EPFL ICC (partie programmation) — Cours 5 : Fonctions — 12/19

Passages d’argument : schéma Méthodologie pour construire une fonction

Concepts Concepts
centraux centraux

@ clairement identifier ce que doit faire la fonction
Passage par valeur :

LN %< w Ne pas se préoccuper ici du comment, mais bel et bien
1 du quoi!

,,,,,,, O RITERIIENNERSSIPR L (ce point n’est en fait que conceptuel, on n’écrit aucun code ici!)
copie @ que doit recevoir la fonction pour faire cela ?

,,,,,,, rz identifie les arguments de la fonction

1 ‘ ® pour chaque argument : doit-il étre modifié par la fonction ?
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (si oui i passage par référence)
Optionnel : se demander si cela a un sens de donner une valeur par
défaut au parameétre correspondant

que doit « retourner » la fonction = type de retour
nom (référence) Se poser ici la question (pour une fonction nommee f) :
supplémentaire est-ce que cela a un sens d’écrire :
[z = f(....);

A Sioui = letype de z est le type de retour de
—— Sinon s le type de retour de £ est void

1 ‘ ® (maintenant, et seulement maintenant) Se préoccuper du comment :
eeprLzozsze e ©EPFL 202526 c’est-a-dire comment faire ce que doit faire la fonction ?

Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier C’est_a_dlre écrire Ie Corps de Ia fonction
cPFL

L= P L= L
ICC (partie programmation) — Cours 5 : Fonctions — 13/19 =iy ICC (partie programmation) — Cours 5 : Fonctions — 14/19

Approfondissement

Approfondissement Approfondissement

On souhaite parfois éviter la copie locale faite par un passage
par valeur.

On utilise alors pour cela un passage par référence.

Mais comme il s’agit d’'une optimisation et non pas d’un vrai
» Optimisation du passage des arguments passage par reference,,on n autor|§e,ra pas la fonction & modifier
ses arguments en protégeant la référence par le mot const.

Exemple :

typeR f(const typel& nom);

Conseil : utilisez toujours const dans vos passages d’arguments
sauf si vous voulez vraiment modifier la variable passée (par
référence).

©EPFL 2025-26 ©EPFL 2025-26

Jamila Sam Jamila Sam

& Jean-Cédric Chappelier & Jean-Cédric Chappelier
-pr-
cPrL

cpr-
ICC (partie programmation) — Cours 5 : Fonctions — 15/19 = Pi' L ICC (partie programmation) — Cours 5 : Fonctions — 16/19

Approfondissemer

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Etude de cas

©EPFL 2025-26
Jamila Sam

& Jean-Cédric Chappelier

c=PrL

) ewid Optimisation (2) @@

données temporaires

Dans le cours sur les variables, nous avions souligné I'existence
de données temporaires, non nommeées.

C++11 permet une meilleure utilisation de ces données
temporaires et introduit la notion de déplacement.

Dans le cas d’'un passage par valeur, le compilateur peut éviter la
copie de données temporaire et simplement les déplacer (= gestion
intelligente du « nom », sans copie physique de la valeur).

Pour le passage par référence, on peut introduire explicitement le
passage de références vers des données temporaires (« rvalue
reference ») avec le signe && :

typeR f(typel&& nom);

Mais cela est trés spécifique et sort du cadre d’un cours
d’introduction.

Nous n’en reparlerons qu’un peu, au niveau avance, lors de la
surcharge des opérateurs au second semestre.

ICC (partie programmation) — Cours 5 : Fonctions — 17/19

Pour préparer le prochain cours

Vidéos et quiz du MOOC semaine 4 (suite) :
» Fonctions : arguments par défaut et surcharge [10 :25]

ICC (partie programmation) — Cours 5 : Fonctions — 19/19

Etude de cas

Etude de cas

> IMC (revisité)

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

ICC (partie programmation) — Cours 5 : Fonctions — 18/19

	Support MOOC
	Concepts centraux
	Approfondissement
	Etude de cas

