Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

(©EPFL 2025-26
Jamila Sam

& Jean-Cédric Chappelier

cPFL

Information, Calcul et Communication
(partie programmation) :

Fonctions

Jamila Sam

Laboratoire d’Intelligence Artificielle
Faculté 1&C

ICC (partie programmation) — Cours 5 : Fonctions — 1/19

=enoe \fidéos, transparents et quiz

www.coursera.org/learn/initiation-programmation-cpp/

w Semaine 4
(jusqu’a "Méthodologie")

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 5 : Fonctions — 2/19

https://www.coursera.org/learn/initiation-programmation-cpp/

Notion de réutilisabilité

Concepts
centraux

Un bon langage de programmation doit donc fournir des moyens
pour permettre la réutilisation de portions de programmes.

= les fonctions

Pourquoi ne jamais dupliquer du code (copier/coller) :

> cela rend la mise a jour de ce programme plus difficile :
reporter chaque modification de P dans chacune des copies
dep

» cela réduit fortement la compréhension du programme
résultant

» cela augmente inutilement la taille du programme

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 5 : Fonctions — 3/19

Fonction (en programmation)

Concepts
centraux

fonction = portion de programme réutilisable ou importante en soi

Plus précisément, une fonction est un objet logiciel caractérisé par :

un corps : le programme a réutiliser/mettre en évidence et qui
a justifié la création de la fonction;;

un nom : référence a I'objet « fonction » lui-méme, indiquée
lors de sa création;

des parametres : (les « entrées », on dit aussi « arguments »)
ensemble de références a des objets définis a
I'extérieur de la fonction dont les valeurs sont
potentiellement utilisées dans le corps de la
fonction;

un type et une valeur de retour (la « sortie ») : le type est indiqué
dans le prototype et la valeur est indiquée dans le
corps par la commande return.
©EPFL 2025-26

Jamila Sam
& Jean-Cédric Chappelier

cPrL

ICC (partie programmation) — Cours 5 : Fonctions — 4 /19

Les « 3 facettes » d’une fonction

Concepts
centraux

» Résumé / Contrat (« prototype »)
» Création / construction (« définition »)

> Utilisation (« appel »)

programmeur
concepteur/développeur

>

programmeur
utilisateur
accord
-
appel prototype
z=f (x,y) double f (double,double);

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

définition

double f (double a,double b)
{

)

ICC (partie programmation) — Cours 5 : Fonctions — 5/19

Exemple complet

Concepts
centraux

#include <iostream>
using namespace std;

prototype
(éouble moyenne (double nombre_1, double nombre_2){)

int main ()
{
double notel (0.0), note2(0.0);
cout << "Entrez vos deux notes : " << endl;
cin >> notel >> note2;
cout << "Votre movenne est - "
<<(moyenne (notel, note2))<< endl;

return 07 appel

double moyenne (double x, double y)
{ Sfinition
return (x +vy) / 2.0;

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 5 : Fonctions — 6/ 19

o ¢aB) Prototypage (2) €D

centraux

Dans les prototypes des fonctions, les identificateurs des
parametres sont optionnels.
En fait, ils ne servent qu’a rendre le prototype plus lisible.

Dans I'exemple précédent, la fonction moyenne peut donc
également étre prototypée par :
double moyenne (double, double);

Conseil : Ecrivez cependant les noms des paramétres dans le
prototypage des fonctions et choisissez des noms pertinents.
Cela augmente la lisibilité de votre code (et donc facilite sa
maintenance).

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L ICC (partie programmation) — Cours 5 : Fonctions — 7/ 19

Concepts
centraux

Si la définition d’'une fonction est faite avant son utilisation, cette
définition peut également servir de prototype.

Dans ce cas, le prototypage est fait en méme temps que la
définition.

Par exemple, on peut directement écrire :

Conseil : il est cependant préférable de prototyper avant de définir
une fonction.

On pourra, par la suite par exemple déplacer la définition de la
fonction, ou bien écrire d’autres fonctions utilisant cette fonction,
etc...

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPrL

ICC (partie programmation) — Cours 5 : Fonctions — 8/ 19

Evaluation d’un appel de fonction

Concepts
centraux

Pour une fonction définie par

typeR f(typel x1, type2 x2, ..., typeN xN) { ... }
I'évaluation de I'appel
f(argl, arg2, ..., argN)

s’effectue de la fagon suivante :

1. les expressions argl, arg2, ..., argh sont évaluées (dans
un ordre quelconque!)

2. les valeurs correspondantes sont affectées aux parametres
x1, x2, ..., xNde la fonction £ (variables locales au corps de 1)

Concrétement, ces deux premiéres étapes reviennent a faire :
x1l = argl,x2 = arg2,..,xN = argN

3. le programme correspondant au corps de la fonction £ est
exécuté

4. I'expression suivant la premiére commande return est
évaluée et retournée comme résultat de de I'appel.

GEPFL 202525 5. cette valeur remplace I'expression de I'appel, i.e. 'expression

Jamila Sam

& Jean-Cédric Chappelier f(argl, arg2, ..., argNi)

-
E P'— L ICC (partie programmation) — Cours 5 : Fonctions — 9/ 19

Evaluation d’un appel de fonction (2)

Concepts
centraux

Les étapes @ et @ n’ont bien sir pas lieu pour une fonction sans
argument.

Les étapes @ et ® n’ont bien sir pas lieu pour une fonction sans
valeur de retour (void).

’étape @ n’a pas lieu lors d’un passage par référence (voir plus
loin).

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 5 : Fonctions — 10/19

Concepts
centraux

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Portée / Appel Z

int x5z ;

int main () {
intx,y

int f(int x) ;

i
b

int z
int mm
int x,%;

-

1CC

partie programmation) — Cours 5 : _Fonctiol

ns —

11/19

Le passage des arguments

Concepts
centraux

On distingue en général 2 types de passages d’arguments :

passage par valeur :

La variable locale associée a un argument passé par valeur
correspond a une copie de I'argument (i.e. un objet distinct mais
de méme valeur littérale).

Les modifications effectuées a l'intérieur de la fonction ne sont
donc pas répercutées a I'extérieur de la fonction.

passage par référence :

La variable locale associée a un argument passé par référence
correspond a une référence sur I'objet associé a I'argument lors
de l'appel.

Une modification qui est effectuée a l'intérieur de la fonction peut
alors se répercuter a I'extérieur de la fonction.

Le passage par référence peut étre explicitement sélectionné en

cerr 202529 définissant le type des parameétres de la fonction comme étant des
&E;éfl"_"awew références (identifiées par le symbole &, par exemple doubles x).
=

ICC (partie programmation) — Cours 5 : Fonctions — 12/19

Passages d’argument : schéma

Concepts
centraux
Passage par valeur :
val x§
1
é g copie
|
Passage par référence :
X
1 nom (référence)
supplémentaire
)
©EPFL202526 S
Jamila Sam

& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 5 : Fonctions — 13/19

Méthodologie pour construire une fonction

et @ clairement identifier ce que doit faire la fonction
= Ne pas se préoccuper ici du comment, mais bel et bien
du quoi!
(ce point n’est en fait que conceptuel, on n’écrit aucun code ici!)
@ que doit recevoir la fonction pour faire cela?
= identifie les arguments de la fonction
® pour chaque argument : doit-il étre modifié par la fonction ?
(si oui = passage par référence)
Optionnel : se demander si cela a un sens de donner une valeur par
défaut au parametre correspondant
@ que doit « retourner » la fonction = type de retour
Se poser ici la question (pour une fonction nommée f) :
est-ce que cela a un sens d’écrire :
z = f(....);
Sioui s letype de z est le type de retour de £
Sinon s le type de retour de £ est void
® (maintenant, et seulement maintenant) Se préoccuper du comment :
eEPFL 202526 c’est-a-dire comment faire ce que doit faire la fonction ?

Jamila Sam

& e Cesr Chapeter c’est-a-dire écrire le corps de la fonction
E P'— L ICC (partie programmation) — Cours 5 : Fonctions — 14/19

Approfondissement

Approfondissement

» Optimisation du passage des arguments

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 5 : Fonctions — 15/19

Approfondissement

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

€ Optimisation (1) €D

On souhaite parfois éviter la copie locale faite par un passage
par valeur.

On utilise alors pour cela un passage par référence.

Mais comme il s’agit d’'une optimisation et non pas d’un vrai
passage par référence, on n’autorisera pas la fonction & modifier
ses arguments en protégeant la référence par le mot const.

Exemple :

typeR f(const typel& nom);

Conseil : utilisez toujours const dans vos passages d’arguments

sauf si vous voulez vraiment modifier la variable passée (par
référence).

ICC (partie programmation) — Cours 5 : Fonctions — 16/19

D e Optimisation (2) : €
données temporaires

Approfondissemer

Dans le cours sur les variables, nous avions souligné I'existence
de données temporaires, non nommées.

C++11 permet une meilleure utilisation de ces données
temporaires et introduit la notion de déplacement.

Dans le cas d’'un passage par valeur, le compilateur peut éviter la
copie de données temporaire et simplement les déplacer (= gestion
intelligente du « nom », sans copie physique de la valeur).

Pour le passage par référence, on peut introduire explicitement le
passage de références vers des données temporaires (« rvalue
reference ») avec le signe && :

typeR f(typel&& nom);

Mais cela est trés spécifique et sort du cadre d’un cours
d’introduction.
ocrrL 202528 Nous n’en reparle’rons qu’un peu, au hiveau avance, lors de la
Tk SUrCharge des opérateurs au second semestre.

-
E P'— L ICC (partie programmation) — Cours 5 : Fonctions — 17/19

Etude de cas

Etude de cas

> IMC (revisité)

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 5 : Fonctions — 18/19

Pour préparer le prochain cours

Etude de cas

Vidéos et quiz du MOOC semaine 4 (suite) :
» Fonctions : arguments par défaut et surcharge [10 :25]

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 5 : Fonctions — 19/19

	Support MOOC
	Concepts centraux
	Approfondissement
	Etude de cas

