
Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Information, Calcul et Communication
(partie programmation) :

Fonctions

Jamila Sam

Laboratoire d’Intelligence Artificielle
Faculté I&C

ICC (partie programmation) – Cours 5 : Fonctions – 1 / 19

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Vidéos, transparents et quiz

www.coursera.org/learn/initiation-programmation-cpp/

☞ Semaine 4
(jusqu’à "Méthodologie")

ICC (partie programmation) – Cours 5 : Fonctions – 2 / 19

https://www.coursera.org/learn/initiation-programmation-cpp/

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Notion de réutilisabilité

Un bon langage de programmation doit donc fournir des moyens
pour permettre la réutilisation de portions de programmes.

☞ les fonctions

Pourquoi ne jamais dupliquer du code (copier/coller) :
▶ cela rend la mise à jour de ce programme plus difficile :

reporter chaque modification de P dans chacune des copies
de P

▶ cela réduit fortement la compréhension du programme
résultant

▶ cela augmente inutilement la taille du programme

ICC (partie programmation) – Cours 5 : Fonctions – 3 / 19

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Fonction (en programmation)

fonction = portion de programme réutilisable ou importante en soi

Plus précisément, une fonction est un objet logiciel caractérisé par :
un corps : le programme à réutiliser/mettre en évidence et qui

a justifié la création de la fonction ;
un nom : référence à l’objet « fonction » lui-même, indiquée

lors de sa création ;
des paramètres : (les « entrées », on dit aussi « arguments »)

ensemble de références à des objets définis à
l’extérieur de la fonction dont les valeurs sont
potentiellement utilisées dans le corps de la
fonction ;

un type et une valeur de retour (la « sortie ») : le type est indiqué
dans le prototype et la valeur est indiquée dans le
corps par la commande return.

ICC (partie programmation) – Cours 5 : Fonctions – 4 / 19

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Les « 3 facettes » d’une fonction

▶ Résumé / Contrat (« prototype »)
▶ Création / construction (« définition »)
▶ Utilisation (« appel »)

utilisateur

programmeur

appel

z=f(x,y) double f(double a,double b)

{
...

}

concepteur/développeur

programmeur

définition

accord

prototype

double f(double,double);

ICC (partie programmation) – Cours 5 : Fonctions – 5 / 19

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Exemple complet

#include <iostream>
using namespace std;

double moyenne(double nombre_1, double nombre_2);

int main()
{

double note1(0.0), note2(0.0);
cout << "Entrez vos deux notes : " << endl;
cin >> note1 >> note2;
cout << "Votre moyenne est : "

<< moyenne(note1, note2) << endl;
return 0;

}

double moyenne(double x, double y)
{

return (x + y) / 2.0;
}

prototype

appel

définition

ICC (partie programmation) – Cours 5 : Fonctions – 6 / 19

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Prototypage (2)

Dans les prototypes des fonctions, les identificateurs des
paramètres sont optionnels.
En fait, ils ne servent qu’à rendre le prototype plus lisible.

Dans l’exemple précédent, la fonction moyenne peut donc
également être prototypée par :

double moyenne(double, double);

Conseil : Écrivez cependant les noms des paramètres dans le
prototypage des fonctions et choisissez des noms pertinents.
Cela augmente la lisibilité de votre code (et donc facilite sa
maintenance).

ICC (partie programmation) – Cours 5 : Fonctions – 7 / 19

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Prototypage par la définition

Si la définition d’une fonction est faite avant son utilisation, cette
définition peut également servir de prototype.
Dans ce cas, le prototypage est fait en même temps que la
définition.

Par exemple, on peut directement écrire :

Conseil : il est cependant préférable de prototyper avant de définir
une fonction.
On pourra, par la suite par exemple déplacer la définition de la
fonction, ou bien écrire d’autres fonctions utilisant cette fonction,
etc...

ICC (partie programmation) – Cours 5 : Fonctions – 8 / 19

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Évaluation d’un appel de fonction

Pour une fonction définie par
typeR f(type1 x1, type2 x2, ..., typeN xN) { ... }
l’évaluation de l’appel

f(arg1, arg2, ..., argN)
s’effectue de la façon suivante :

1. les expressions arg1, arg2, ..., argN sont évaluées (dans
un ordre quelconque !)

2. les valeurs correspondantes sont affectées aux paramètres
x1, x2, ..., xN de la fonction f (variables locales au corps de f)

Concrètement, ces deux premières étapes reviennent à faire :
x1 = arg1, x2 = arg2, ..., xN = argN

3. le programme correspondant au corps de la fonction f est
exécuté

4. l’expression suivant la première commande return est
évaluée et retournée comme résultat de de l’appel.

5. cette valeur remplace l’expression de l’appel, i.e. l’expression
f(arg1, arg2, ..., argN)

ICC (partie programmation) – Cours 5 : Fonctions – 9 / 19

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Évaluation d’un appel de fonction (2)

Les étapes ➀ et ➁ n’ont bien sûr pas lieu pour une fonction sans
argument.

Les étapes ➃ et ➄ n’ont bien sûr pas lieu pour une fonction sans
valeur de retour (void).

L’étape ➁ n’a pas lieu lors d’un passage par référence (voir plus
loin).

ICC (partie programmation) – Cours 5 : Fonctions – 10 / 19

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Portée / Appel

int x, z ;

int main () {
int x, y ;
. . .
{ int y ;
. . . x . . .
. . . y . . .
. . . z . . .
} . . .
. . . y . . .

}
. .

int f(int x) ;
int z ;
int main () {
int x, y ;
. . .
. . . f(y) . . .
}

int f(int x) {

int y ;
. . .
. . . x
. . . y . . .
. . . z . . .
}

ICC (partie programmation) – Cours 5 : Fonctions – 11 / 19

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Le passage des arguments
On distingue en général 2 types de passages d’arguments :

passage par valeur :

La variable locale associée à un argument passé par valeur
correspond à une copie de l’argument (i.e. un objet distinct mais
de même valeur littérale).
Les modifications effectuées à l’intérieur de la fonction ne sont
donc pas répercutées à l’extérieur de la fonction.

passage par référence :

La variable locale associée à un argument passé par référence
correspond à une référence sur l’objet associé à l’argument lors
de l’appel.
Une modification qui est effectuée à l’intérieur de la fonction peut
alors se répercuter à l’extérieur de la fonction.
Le passage par référence peut être explicitement sélectionné en
définissant le type des paramètres de la fonction comme étant des
références (identifiées par le symbole &, par exemple double& x).

ICC (partie programmation) – Cours 5 : Fonctions – 12 / 19

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Passages d’argument : schéma

Passage par valeur :

1

1

xval

copie

Passage par référence :

1

val nom (référence)
supplémentaire

x

ICC (partie programmation) – Cours 5 : Fonctions – 13 / 19

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Méthodologie pour construire une fonction
➀ clairement identifier ce que doit faire la fonction

☞ ne pas se préoccuper ici du comment, mais bel et bien
du quoi !

(ce point n’est en fait que conceptuel, on n’écrit aucun code ici !)
➁ que doit recevoir la fonction pour faire cela?

☞ identifie les arguments de la fonction
➂ pour chaque argument : doit-il être modifié par la fonction?

(si oui ☞ passage par référence)
Optionnel : se demander si cela à un sens de donner une valeur par
défaut au paramètre correspondant

➃ que doit « retourner » la fonction ☞ type de retour
Se poser ici la question (pour une fonction nommée f) :
est-ce que cela a un sens d’écrire :

z = f(....);
Si oui ☞ le type de z est le type de retour de f
Si non ☞ le type de retour de f est void

➄ (maintenant, et seulement maintenant) Se préoccuper du comment :
c’est-à-dire comment faire ce que doit faire la fonction?
c’est-à-dire écrire le corps de la fonction

ICC (partie programmation) – Cours 5 : Fonctions – 14 / 19

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Approfondissement

▶ Optimisation du passage des arguments

ICC (partie programmation) – Cours 5 : Fonctions – 15 / 19

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Optimisation (1)

On souhaite parfois éviter la copie locale faite par un passage
par valeur.

On utilise alors pour cela un passage par référence.

Mais comme il s’agit d’une optimisation et non pas d’un vrai
passage par référence, on n’autorisera pas la fonction à modifier
ses arguments en protégeant la référence par le mot const.

Exemple :

typeR f(const type1& nom);

Conseil : utilisez toujours const dans vos passages d’arguments
sauf si vous voulez vraiment modifier la variable passée (par
référence).

ICC (partie programmation) – Cours 5 : Fonctions – 16 / 19

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Optimisation (2) :
données temporaires

Dans le cours sur les variables, nous avions souligné l’existence
de données temporaires, non nommées.
C++11 permet une meilleure utilisation de ces données
temporaires et introduit la notion de déplacement.

Dans le cas d’un passage par valeur, le compilateur peut éviter la
copie de données temporaire et simplement les déplacer (= gestion
intelligente du « nom », sans copie physique de la valeur).

Pour le passage par référence, on peut introduire explicitement le
passage de références vers des données temporaires (« rvalue
reference ») avec le signe && :

typeR f(type1&& nom);

Mais cela est très spécifique et sort du cadre d’un cours
d’introduction.
Nous n’en reparlerons qu’un peu, au niveau avancé, lors de la
surcharge des opérateurs au second semestre.

ICC (partie programmation) – Cours 5 : Fonctions – 17 / 19

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Etude de cas

▶ IMC (revisité)

ICC (partie programmation) – Cours 5 : Fonctions – 18 / 19

Support MOOC

Concepts
centraux

Approfondissement

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Pour préparer le prochain cours

Vidéos et quiz du MOOC semaine 4 (suite) :
▶ Fonctions : arguments par défaut et surcharge [10 :25]

ICC (partie programmation) – Cours 5 : Fonctions – 19 / 19

	Support MOOC
	Concepts centraux
	Approfondissement
	Etude de cas

