
Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Information, Calcul et Communication
(partie programmation) :

Structures de contrôle

Jamila Sam

Laboratoire d’Intelligence Artificielle
Faculté I&C

ICC (partie programmation) – Cours 4 : Structures de contrôle – 1 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Vidéos, transparents et quiz

www.coursera.org/learn/initiation-programmation-cpp/

☞ Semaine 3 (et 2)

ICC (partie programmation) – Cours 4 : Structures de contrôle – 2 / 40

Support MOOC

Complément sur
les variables
auto et constantes

Concepts
centraux

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

auto

En , on peut laisser le compilateur deviner le type d’une
variable grace au mot-clé auto.

Le type de la variable est déduit du contexte. Il faut donc qu’il y ait
un contexte, c’est-à-dire une initialisation.

Par exemple :
auto val(2);
auto j(2*i+5);
auto x(7.2835);

Conseil : N’abuser pas de cette possibilité et explicitez vos types
autant que possibles.
N’utilisez auto que dans les cas « techniques », par exemple (qui
viendra plus tard dans le cours) :
for (auto p = v.begin(); p != v.end(); ++p)

au lieu de
for (vector<int>::iterator

p = v.begin(); p != v.end(); ++p)

ICC (partie programmation) – Cours 4 : Structures de contrôle – 3 / 40

Support MOOC

Complément sur
les variables
auto et constantes

Concepts
centraux

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Données modifiables/non modifiables

Par défaut, les variables en C++ sont modifiables.

Si l’on ne souhaite pas modifier une « variable » après son
initialisation : la définir comme constante (pour ce nom là
uniquement)

La nature modifiable ou non modifiable d’une donnée au travers
de ce nom peut être définie lors de la déclaration par l’indication
du mot réservé const.

Elle ne pourra plus être modifiée par le programme en utilisant ce
nom (toute tentative de modification via ce nom produira un
message d’erreur lors de la compilation).

Exemples :
int const couple(2);
double const g(9.81);

ICC (partie programmation) – Cours 4 : Structures de contrôle – 4 / 40

https://www.coursera.org/learn/initiation-programmation-cpp/

Support MOOC

Complément sur
les variables
auto et constantes

Concepts
centraux

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Expressions constantes

En C++11, il existe aussi le mot clé constexpr.

Il est d’utilisation plus générale, mais est aussi plus contraignant
que const : la valeur initiale doit pouvoir être calculée à la
compilation.

☞ Les deux (const et constexpr) sont donc très différents !

▶ const indique au compilateur qu’une donnée ne changera pas
de valeur au travers de ce nom; mais

1. le compilateur peut très bien ne pas connaître la valeur en
question au moment de la compilation ; et

2. cette valeur pourrait changer par ailleurs.

▶ constexpr indique au compilateur qu’une donnée ne
changera pas du tout de valeur et qu’il doit pouvoir en calculer
la valeur au moment de la compilation (i.e. cette valeur ne dépend
pas de ce qu’il va se passer plus tard dans le programme).

Conseil : Si ces deux conditions sont vérifiées, on préfèrera
utiliser constexpr.

ICC (partie programmation) – Cours 4 : Structures de contrôle – 5 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux
Structures de
contrôle

Expressions
conditionnelles

Boucles et
itérations

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

J’écris à mes amis

// Programme ami.cc
#include <iostream>
using namespace std;
int main()
{

string nom;
string adresse;

// Lecture des donnee
cout << "Donnez le nom de votre ami : " ;
cin >> nom;

cout << "Donnez l’adresse de votre ami : " ;
cin >> adresse;

// Impression de l’etiquette

cout << nom << endl;
cout << adresse << endl;

}

☞ Exécution linéaire

ICC (partie programmation) – Cours 4 : Structures de contrôle – 6 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux
Structures de
contrôle

Expressions
conditionnelles

Boucles et
itérations

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Structures de contrôle

C++ (comme la plupart des langages de programmation) permet
la représentation d’enchaînements plus complexes grâce aux
structures de contrôle

À quoi ça sert ?
Une structure de contrôle sert à modifier l’ordre linéaire
d’exécution d’un programme.

☞ faire exécuter à la machine des tâches de façon répétitive, ou
en fonction de certaines conditions (ou les deux).

ICC (partie programmation) – Cours 4 : Structures de contrôle – 7 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux
Structures de
contrôle

Expressions
conditionnelles

Boucles et
itérations

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Les différentes structures de contrôle

On distingue 3 types de structures de contrôle :
les branchements conditionnels : si ... alors ...

Si ∆= 0
x ←− b

2
Sinon

x ← −b−
√
∆

2 , y ← −b+
√
∆

2

les boucles conditionnelles : tant que ...

Tant que réponse non valide
poser la question

les itérations : pour ... allant de ... à ... , pour ... parmi ...

x =
5

∑
i=1

1
i2

x ← 0
Pour i de 1 à 5

x ← x + 1
i2

ICC (partie programmation) – Cours 4 : Structures de contrôle – 8 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux
Structures de
contrôle

Expressions
conditionnelles

Boucles et
itérations

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Les différentes structures de contrôle

On distingue 3 types de structures de contrôle :
les branchements conditionnels : si ... alors ...

les boucles conditionnelles : tant que ...

les itérations : pour ... allant de ... à ... , pour ... parmi ...

Note : on peut toujours (évidemment !) faire des itérations en
utilisant des boucles :

x ← 0
i ← 1
Tant que i ≤ 5

x ← x + 1
i2

i ← i +1

mais conceptuellement (et syntaxiquement aussi dans certains langages)
il y a une différence.

ICC (partie programmation) – Cours 4 : Structures de contrôle – 8 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux
Structures de
contrôle

Expressions
conditionnelles

Boucles et
itérations

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Les différentes structures de contrôle

On distingue 3 types de structures de contrôle :
les branchements conditionnels : si ... alors ...

les boucles conditionnelles : tant que ...

les itérations : pour ... allant de ... à ... , pour ... parmi ...

Les définitions de ces diverses structures de contrôle reposent sur
les notions de condition et de bloc d’instructions.

Une condition est une expression logique telle que définie au
cours précédent.

ICC (partie programmation) – Cours 4 : Structures de contrôle – 8 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux
Structures de
contrôle

Expressions
conditionnelles

Boucles et
itérations

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Retour à notre premier exemple

Résolution d’une équation du second degré : x2 +b x +c = 0
#include <iostream>
#include <cmath>
using namespace std;
main() {
double b(0.0);
double c(0.0);
double delta(0.0);

cin >> b >> c;
delta = b*b - 4*c;
if (delta < 0.0) {
cout << "pas de solutions reelles" << endl;

} else if (delta == 0.0) {
cout << "une solution unique : " << -b/2.0 << endl;

} else {
cout << "deux solutions : " << (-b-sqrt(delta))/2.0

<< " et " << (-b+sqrt(delta))/2.0 << endl;
}

}

données
traitements
structures de contrôle

ICC (partie programmation) – Cours 4 : Structures de contrôle – 9 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux
Structures de
contrôle

Expressions
conditionnelles

Boucles et
itérations

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Conditions

Pour exprimer des conditions

☞ Opérateurs de comparaison et opérateurs logiques

ICC (partie programmation) – Cours 4 : Structures de contrôle – 10 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux
Structures de
contrôle

Expressions
conditionnelles

Boucles et
itérations

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Opérateurs de comparaison

Les opérateurs de comparaison (relationnels) sont :

== égalité
!= non égalité
< inférieur
> supérieur
<= inférieur ou égal
>= supérieur ou égal

Leur résultat est un booléen (true ou false)
Exemples (expressions logiques avec opérateur de comparaison) :

x >= y
x != (z + 2)
(x + 4) - z == 5
b = (x == 5);

ICC (partie programmation) – Cours 4 : Structures de contrôle – 11 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux
Structures de
contrôle

Expressions
conditionnelles

Boucles et
itérations

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Le type bool

bool est un type (au même titre que char, int ou double)
▶ ne peux prendre que deux valeurs
▶ valeurs littérales : true, false
▶ représente de « valeurs de vérité », des conditions logiques

ICC (partie programmation) – Cours 4 : Structures de contrôle – 12 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux
Structures de
contrôle

Expressions
conditionnelles

Boucles et
itérations

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Opérateurs logiques
On peut combiner des expressions logiques au moyen
d’opérateurs logiques :

&& “et” logique
|| ou
! négation (Remarque : cet opérateur n’a qu’un seul opérande)

Exemples :
▶ Expression logique utilisant des opérateurs logiques :

((z != 0) && (2*(x-y)/z < 3))

▶ Code utilisant des opérateurs logiques :

bool un_test(true);
bool un_autre_test((x >= 0) ||

((x*y > 0) && !unTest));

Note : La norme (ISO/IEC 14882 :1998) définit aussi les formes
alternatives : and, or et not Par exemple ((x >= 0) or
((x*y > 0) and not un_test))

☞ pas toujours supporté par tous les compilateurs :-(
ICC (partie programmation) – Cours 4 : Structures de contrôle – 13 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux
Structures de
contrôle

Expressions
conditionnelles

Boucles et
itérations

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Opérateurs logiques (2)

Les opérateurs logiques &&, || et ! sont définis par les tables de
vérité usuelles :

x y !x x && y x || y x ∧ y

true true false true true false

true false false false true true

false true true false true true

false false true false false false

ICC (partie programmation) – Cours 4 : Structures de contrôle – 14 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux
Structures de
contrôle

Expressions
conditionnelles

Boucles et
itérations

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Boucles et itérations

Les boucles permettent la mise en oeuvre répétitive d’un
traitement.

La répétition contrôlée par une condition de continuation.

▶ boucles conditionnelles a priori
while (condition) {

Instructions
}

▶ boucles conditionnelles a posteriori
do {

Instructions
} while (conditions);

ICC (partie programmation) – Cours 4 : Structures de contrôle – 15 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux
Structures de
contrôle

Expressions
conditionnelles

Boucles et
itérations

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Boucles et itérations (2)

▶ itérations générales («à la C»)
for (initialisation ; condition ; mise_a_jour) {

Instructions
}

▶ itérations sur ensembles de valeurs ())
☞ plus tard (tableaux)

for (declaration : ensemble)

ICC (partie programmation) – Cours 4 : Structures de contrôle – 16 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux
Structures de
contrôle

Expressions
conditionnelles

Boucles et
itérations

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Boucles : Exemple

int i(5);
while (i > 1) {
cout << i << endl;
i = i / 2 ;

}

affichera

5
2

ICC (partie programmation) – Cours 4 : Structures de contrôle – 17 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements
break et continue

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Approfondissements

▶ Du bon usage des booléens
▶ Évaluation paresseuse
▶ Choix multiples
▶ l’instruction break

▶ l’instruction continue

ICC (partie programmation) – Cours 4 : Structures de contrôle – 18 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements
break et continue

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Du bon usage des variables booléennes

Une variable booléenne représente une condition

☞ Inutile de la comparer explicitement à true ou false !

Correct :
if (un_test)
if (!un_test)
return un_test;

Non recommandé :

if (un_test == true)
if (un_test != true)
if (un_test == false)
if (un_test != false)

ICC (partie programmation) – Cours 4 : Structures de contrôle – 19 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements
break et continue

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Évaluation « paresseuse »

Les opérateurs logiques && et || effectuent une évaluation
« paresseuse » (“lazy evaluation”) de leur arguments :

l’évaluation des arguments se fait de la gauche vers la droite et seuls les
arguments strictement nécessaires à la détermination de la valeur
logique sont évalués.

Ainsi, dans X1 && X2 && ... && Xn, les arguments Xi ne
sont évalués que jusqu’au 1er argument faux (s’il existe, auquel
cas l’expression est fausse, sinon l’expression est vraie) ;

Exemple : dans (i != 0) && (3/i < 25) le second terme ne
sera effectivement évalué uniquement si i est non nul. La division
par i ne sera donc jamais erronée.
Et dans X1 || X2 || ... || Xn, les arguments ne sont évalués
que jusqu’au 1er argument vrai (s’il existe, auquel cas l’expression
est vraie, sinon l’expression est fausse).

Exemple : dans (i == 0) || (3/i < 25) le second terme ne
sera effectivement évalué uniquement si i est non nul.

ICC (partie programmation) – Cours 4 : Structures de contrôle – 20 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements
break et continue

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Choix multiples

On peut écrire de façon plus claire l’enchaînement de plusieurs
conditions dans le cas où l’on teste différentes valeurs d’une
expression

Avec if ..else Avec switch

if (i == 1)
Instructions1

else if (i == 12)
Instructions2

else if ...
else

InstructionsN+1

switch (i)
{

case 1:
Instructions1
break;

case 12:
Instructions2
break;

case ...
default:

InstructionsN+1
}

☞ chaque case correspond à une constante int (ou
équivalent) ou char

ICC (partie programmation) – Cours 4 : Structures de contrôle – 21 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements
break et continue

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

To break or not to break . . .

Attention Si l’on ne met pas de break, l’exécution ne passe pas
à la fin du switch, mais continue avec les instructions du case
suivant :

switch (a+b) {
case 0: instruction1; // execution uniquement

break; // quand (a+b) vaut 0
case 2:
case 3: instruction2; // quand (a+b) vaut 2 ou 3
case 4:
case 8: instruction3; // quand (a+b) vaut 2, 3, 4

break; // ou 8
default: instruction4; // dans tous les autres cas

}

ICC (partie programmation) – Cours 4 : Structures de contrôle – 22 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements
break et continue

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

switch : un exemple

Soit l’enchaînement de conditions suivant :
cout << "Entrez un entier: ";

int a; cin >> a;

if (a == 0)
System.out.println("To break");

else
if (a == 1)

cout << "or not" << endl;
else

if (a == 2)
cout << "to break" << endl;

else
cout << "that is the question" << endl;

Exercice : essayons de l’exprimer au moyen d’un switch . . .

ICC (partie programmation) – Cours 4 : Structures de contrôle – 23 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements
break et continue

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Avec break

Code Exécution

cout << "Entrez un entier: ";
int a; cin >> a;

switch (a) {
case 0 :

cout << "To break" << endl;
break;

case 1 :
cout << "or not" << endl;

break;
case 2 :

cout << "to break" << endl;
break;

default :
cout <<

"that is the question" << endl;
}

Entrez un entier: 0
To break

Entrez un entier: 1
or not

Entrez un entier: 99
that is the question

ICC (partie programmation) – Cours 4 : Structures de contrôle – 24 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements
break et continue

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Sans break

Code Exécution

cout << "Entrez un entier: ";
int a; cin >> a;

switch (a) {
case 0 :

cout << "To break" << endl;
case 1 :

cout << "or not" << endl;
case 2 :

cout << "to break" << endl;
default :

cout <<
"that is the question" << endl;

}

Entrez un entier: 99
that is the question

Entrez un entier: 2
to break
that is the question

Entrez un entier: 0
To break
or not
to break
that is the question

ICC (partie programmation) – Cours 4 : Structures de contrôle – 25 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements
break et continue

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

switch vs if..else

switch est moins général que if..else :

▶ La valeur sur laquell on teste doit être soit char ou int

▶ Les cas doivent être des constantes
(pas de variables)

ICC (partie programmation) – Cours 4 : Structures de contrôle – 26 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements
break et continue

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Sauts : break et continue

C++ fournit deux instructions prédéfinies, break et continue,
permettant de contrôler de façon plus fine le déroulement d’une
boucle.
▶ Si l’instruction break est exécutée au sein du bloc intérieur

de la boucle, l’exécution de la boucle est interrompue
(quelque soit l’état de la condition de contrôlle) ;

▶ Si l’instruction continue est exécutée au sein du bloc
intérieur de la boucle, l’exécution du bloc est interrompue et la
condition de continuation est évaluée pour déterminer si
l’exécution de la boucle doit être poursuivie.

Conseil : En toute rigueur on n’aurait pas besoin de ces
instructions, et tout bon programmeur évite de les utiliser.

ICC (partie programmation) – Cours 4 : Structures de contrôle – 27 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements
break et continue

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Instructions break et continue

while (condition) {
. . .
instructions de la boucle
. . .
break
. . .
continue
. . .
}
instructions en sortie de la boucle
. . .

ICC (partie programmation) – Cours 4 : Structures de contrôle – 28 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements
break et continue

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Breaking (it too) bad

Pour la petite histoire, un bug lié à une mauvaise utilisation de
break; a conduit à l’effondrement du réseau téléphonique longue
distance d’AT&T, le 15 janvier 1990. Plus de 16’000 usagers
ont perdu l’usage de leur téléphone pendant près de 9 heures.
70’000’000 d’appels ont été perdus.

[P. Van der Linden, Expert C Programming, 1994.]

ICC (partie programmation) – Cours 4 : Structures de contrôle – 29 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements
break et continue

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Instruction break : exemple

Exemple d’utilisation de break :
une mauvaise (!) façon de simuler une boucle avec condition
d’arrêt
while (true) {
Instruction 1;
...
if (condition_d_arret)

break;
}
autres instructions;

Question : quelle est la bonne façon d’écrire le code ci-dessus?

do
{
Instruction 1;
...

} while (!condition_d_arret);

autres instructions;

ICC (partie programmation) – Cours 4 : Structures de contrôle – 30 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements
break et continue

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Instruction continue : exemple

Exemple d’utilisation de continue :
int i;
...
i = 0;
while (i < 100) {
++i;
if ((i % 2) == 0) continue;
// L’execution de la suite des instructions
// ne se fait pour les entiers impairs
Instructions;
...

}

Question : quelle est une meilleure façon d’écrire le code
ci-dessus?
(on suppose que Instructions; ... ne modifie pas la valeur de i)

for (i = 1; i < 100; i += 2) {
Instructions;

}

ICC (partie programmation) – Cours 4 : Structures de contrôle – 31 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements
break et continue

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Les structures de contrôle

les branchements conditionnels : si ... alors ...
if (condition)

instructions
. .
if (condition 1)

instructions 1
...
else if (condition N)

instructions N
else

instructions N+1

switch (expression) {
case valeur:

instructions;
break;

...
default:

instructions;
}

les boucles conditionnelles : tant que ...
while (condition)

Instructions
do

Instructions
while (condition);

les itérations : pour ... allant de ... à ...
for (initialisation ; condition ; increment)

instructions

les sauts : break; et continue;

Note : instructions représente une instruction élémentaire ou un bloc.
instructions; représente une suite d’instructions élémentaires.

ICC (partie programmation) – Cours 4 : Structures de contrôle – 32 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Etude de cas

▶ calculer des valeurs de la fonction

f (x) =

√
20+7x −x2 log

(
1

x+5

)
x
10 −

√
log

(
x3−3x +7

)
− x2

5

ICC (partie programmation) – Cours 4 : Structures de contrôle – 33 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Etude de cas

Comment calculer l’expression suivante sans produire d’erreur
(i.e. sans « Nan », « Not a number »)?

√
20+7x −x2 log

(
1

x+5

)
x
10 −

√
log

(
x3−3x +7

)
− x2

5

☞ DÉCOMPOSER
Traiter « petit bout par petit bout »

Par exemple :
if (x + 5.0 == 0.0) {
cerr << "Expression invalide pour x=" << x

<< " : division par 0" << endl;
return 1; // On sort avec un code d’erreur

}

ICC (partie programmation) – Cours 4 : Structures de contrôle – 34 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Etude de cas

Bien sûr, on suppose qu’au préalable x ait été déclaré et ait une
valeur, par exemple saisie au clavier :
double x(0.0);
cout << "Entrez une valeur pour x : ";
cin >> x;

On pourrait alors continuer le code par exemple comme suit :

double x(0.0);
cout << "Entrez une valeur pour x : ";
cin >> x;

if (x + 5.0 == 0.0) {
cerr << "Expression invalide pour x=" << x

<< " : division par 0" << endl;
return 1;

}

if (x + 5.0 < 0.0) {
cerr << "Expression invalide pour x=" << x

<< " : logarithme d’un nombre négatif" << endl;
return 1;

}

ICC (partie programmation) – Cours 4 : Structures de contrôle – 35 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Etude de cas

Mais ce code présente un gros défaut !
if (x + 5.0 == 0.0) {
cerr << "Expression invalide pour x=" << x

<< " : division par 0" << endl;
return 1;

}

if (x + 5.0 < 0.0) { // x + 5.0 COPIEE-COLLEE !!
cerr << "Expression invalide pour x=" << x

<< " : logarithme d’un nombre négatif" << endl;
return 1;

}

JAMAIS DE « COPIER-COLLER »!

Dans du code, il ne faut jamais avoir deux fois la même chose !

☞ problèmes de maintenance (corrections futures du code)

ICC (partie programmation) – Cours 4 : Structures de contrôle – 36 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Etude de cas

Solution : introduire une variable auxiliaire,
qui réprésente justement le fait que ce soit la même chose :
double auxiliaire(x + 5.0);
if (auxiliaire == 0.0) {
cerr << "Expression invalide pour x=" << x

<< " : division par 0" << endl;
return 1;

}

if (auxiliaire < 0.0) {
cerr << "Expression invalide pour x=" << x

<< " : logarithme d’un nombre négatif" << endl;
return 1;

}

ICC (partie programmation) – Cours 4 : Structures de contrôle – 37 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Etude de cas

On peut ensuite continuer dans le même esprit,
en utilisant si nécessaire une seconde variable :
// ...

if (auxiliaire < 0.0) {
cerr << "Expression invalide pour x=" << x

<< " : logarithme d’un nombre négatif" << endl;
return 1;

}

double resultat(log(1.0 / auxiliaire));

auxiliaire = 20.0 + 7.0*x - x*x;
if (auxiliaire <= 0.0) {
cerr << "Expression invalide pour x=" << x

<< " : racine d’un nombre négatif" << endl;
return 1;

}

resultat *= sqrt(auxiliaire);

// etc.

ICC (partie programmation) – Cours 4 : Structures de contrôle – 38 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Qu’en est-il des problèmes de précision?
Les comparaisons exactes entre double peuvent être erronées en
raison de problèmes de précision.
Ainsi x+0.5 == 0 peut (alors que l’on pense x valoir -5.0) retourner
false au lieu de true si par exemple x est obtenue par calcul !
En pratique, lorsque cela est rendu possible par le domaine
d’application, on fait souvent des comparaisons à un espilon
près :
constexpr PRECISION(1e-8);

if (abs(x + 0.5) <= PRECISION) {
//...

}

Néamoins, il ne s’agit alors plus d’une résolution mathématique du
problème !
Si l’on veut faire des mathématiques avec un ordinateur, il faut soit
admettre que les résultats ne sont pas garantis (ce que vous allez faire
dans les exercices de cette semaine), soit avoir recours à d’autres
procédés plus complexes (arithmétique des intervalles par exemple, mais
c’est tout un domaine !)

ICC (partie programmation) – Cours 4 : Structures de contrôle – 39 / 40

Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements

Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Pour préparer le prochain cours

▶ Vidéos et quiz du MOOC semaine 4 :
▶ Fonctions : introduction [16 :07]
▶ Fonctions : appels [09 :35]
▶ Fonctions : passage des arguments [09 :29]
▶ Fonctions : prototypes [05 :56]
▶ Fonctions : méthodologie [10 :21]

ICC (partie programmation) – Cours 4 : Structures de contrôle – 40 / 40

	Support MOOC
	Complément sur les variables
	auto et constantes

	Concepts centraux
	Structures de contrôle
	Expressions conditionnelles
	Boucles et itérations

	Approfondissements
	break et continue

	Etude de cas
	Approfondissements

