Information, Calcul et Communication
(partie programmation) :

Structures de contrble

Jamila Sam

Laboratoire d’Intelligence Atrtificielle
Faculté 1&C

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cps
= P' L ICC (partie programmation) — Cours 4 : Structures de contrle — 1/40

@ e auto

En Cﬁ*ﬂ, on peut laisser le compilateur deviner le type d’'une
variable grace au mot-clé auto.

auto et constantes

Le type de la variable est déduit du contexte. Il faut donc qu'il y ait
un contexte, c’est-a-dire une initialisation.

Par exemple :
auto val (2);
auto j(2%x1i+5);
auto x(7.2835);

Conseil : N’abuser pas de cette possibilité et explicitez vos types
autant que possibles.

N’utilisez aut o que dans les cas « techniques », par exemple (qui
viendra plus tard dans le cours) :

for (auto p = v.begin(); p != v.end(); ++p)
au lieu de
for (vector<int>::iterator

rlivsiated p = v.begin(); p != v.end(); ++p)

& Jean-Cédric Chappelier

[- P [- L
= ICC (partie programmation) — Cours 4 : Structures de controle — 3/40

==nvoce jdéos, transparents et quiz

WWw.coursera.org/learn/initiation-programmation-cpp/

= Semaine 3 (et 2)

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

-pr-
= P'- L ICC (partie programmation) — Cours 4 : Structures de contrle — 2/40

Données modifiables/non modifiables

auto et constantes
Par défaut, les variables en C++ sont modifiables.

Si 'on ne souhaite pas modifier une « variable » aprés son
initialisation : la définir comme constante (pour ce nom la
uniquement)

La nature modifiable ou non modifiable d’'une donnée au travers
de ce nom peut étre définie lors de la déclaration par 'indication
du mot réservé const.

Elle ne pourra plus étre modifiée par le programme en utilisant ce
nom (toute tentative de modification via ce nom produira un
message d’erreur lors de la compilation).

Exemples :
int const couple(2);
double const g(9.81);

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

[- P [- L
= ICC (partie programmation) — Cours 4 : Structures de controle — 4/40

https://www.coursera.org/learn/initiation-programmation-cpp/

€z o) Expressions constantes

auto et constantes

En C++11, il existe aussi le mot clé constexpr.

Il est d’utilisation plus générale, mais est aussi plus contraignant
que const : la valeur initiale doit pouvoir étre calculée a la
compilation.

= Les deux (const et constexpr) sont donc trés différents!

> const indique au compilateur qu'une donnée ne changera pas
de valeur au travers de ce nom; mais

1. le compilateur peut trés bien ne pas connaitre la valeur en
question au moment de la compilation; et
2. cette valeur pourrait changer par ailleurs.

> constexpr indique au compilateur qu'une donnée ne
changera pas du tout de valeur et qu’il doit pouvoir en calculer
la valeur au moment de la compilation (i.e. cette valeur ne dépend
pas de ce qu’il va se passer plus tard dans le programme).

Conseil : Si ces deux conditions sont vérifiées, on préférera
OEPFL 202526 utiliser constexpr.

Jamila Sam
& Jean-Cédric Chappelier

':FDE“_
=i ICC (partie programmation) — Cours 4 : Structures de controle — 5/40

Structures de controle

C++ (comme la plupart des langages de programmation) permet
Shuctures de la représentation d’enchainements plus complexes grace aux

contrdle

structures de controle

A quoi ¢a sert?
Une structure de controle sert a modifier I'ordre linéaire
d’exécution d’'un programme.

= faire exécuter a la machine des taches de fagon répétitive, ou
en fonction de certaines conditions (ou les deux).

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

[- P [- L
= ICC (partie programmation) — Cours 4 : Structures de contrle — 7/40

J’écris a mes amis

Concepts
centraux

s de // Programme ami.cc
#include <iostream>
using namespace std;
int main()

{

string nom;
string adresse;

// Lecture des donnee
cout << "Donnez le nom de votre ami : " ;
cin >> nom;

cout << "Donnez 1’adresse de votre ami : " ;

cin >> adresse;
// Impression de l’etiquette
cout << nom << endl;

cout << adresse << endl;

}
= EXécution linéaire

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

-pr-
= P'- L ICC (partie programmation) — Cours 4 : Structures de contrle — 6/40

Les différentes structures de controle

On distingue 3 types de structures de contrble :
o les branchements conditionnels : si ... alors ...

SiA=0
xe b
Sinon
X 7bT2\/E y 7bJ5JE

3

les boucles conditionnelles : tant que ...

Tant que réponse non valide
poser la question

les itérations : pour ... allantde ... a ..., pour ... parmi ...

5 1 x<«+0
xzza Pouride1as
; 1
i—1! XX+ %
©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier
- P - L
= ICC (partie programmation) — Cours 4 : Structures de controle — 8/40

Structures de
contréle

itérations

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Structures de
contrdle
Expressions
conditionnelles

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Les différentes structures de controle

On distingue 3 types de structures de contrble :
les branchements conditionnels : si ... alors ...

les boucles conditionnelles : fant que ...

les itérations : pour ... allantde ... a ..., pour ... parmi ...

Note : on peut toujours (évidemment!) faire des itérations en
utilisant des boucles :

X+ 0
i1

Tantque /i <5
X<—X+,-12
f+—i+1

mais conceptuellement (et syntaxiquement aussi dans certains langages)
il y a une différence.

ICC (partie programmation) — Cours 4 : Structures de controle — 8/40

Retour a notre premier exemple

Résolution d’une équation du second degré : x° + b x + ¢ —0

#include <iostream>
#include <cmath>
using namespace std;

main () |

double b(0.0);
double c(0.0);
double delta(0.0);
cin >> b >> ¢c;
delta = bxb — 4x*c;
if (delta < 0.0) {
cout << "pas de solutions reelles" << endl;
} else 1if (delta == 0.0) {
cout << "une solution unique : " << -b/2.0 << endl;
} else {
cout << "deux solutions : " << (-b-sqgrt(delta)) /2.0
<< " et " << (~btsgrt(delta)) /2.0 << endl;
}
}
données
traitements

structures de contréle

ICC (partie programmation) — Cours 4 : Structures de contrble —

9/40

Structures de
controle
Expressions
conditionnelles

Boucles et
itérations

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Structures de
contréle
Expressions
conditionnelles
Boucles et
itérations

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Les différentes structures de controle

On distingue 3 types de structures de contrble :
les branchements conditionnels : si ... alors ...

les boucles conditionnelles : fant que ...

les itérations : pour ... allantde ... a ..., pour ... parmi ...

Les définitions de ces diverses structures de contrdle reposent sur
les notions de condition et de bloc d’instructions.

Une condition est une expression logique telle que définie au
cours précédent.

ICC (partie programmation) — Cours 4 : Structures de contrle — 8/40

Conditions

Pour exprimer des conditions
ww Opérateurs de comparaison et opérateurs logiques

ICC (partie programmation) — Cours 4 : Structures de contréle — 10/40

Structures de
controle
Expressions
conditionnelles
Boucles et

itérations

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Structures
Expressions
conditionnelles
Boucles et
itérations

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Opérateurs de comparaison

Les opérateurs de comparaison (relationnels) sont :

== égalité

'= non égalité

< inférieur

> supérieur

<= inférieur ou égal
>= supérieur ou égal

Leur résultat est un booléen (true ou false)
Exemples (expressions logiques avec opérateur de comparaison) :

X >=y

X = (z + 2)

(x + 4) - z == 5
b= (x==5);

ICC (partie programmation) — Cours 4 : Structures de contrle — 11/40

Opérateurs logiques

On peut combiner des expressions logiques au moyen
d’opérateurs logiques :

&& “et”logique
[ou
! négation

(Remarque : cet opérateur n’a qu’un seul opérande)

Exemples :

> Expression logique utilisant des opérateurs logiques :

((z !'=0) &&

(2% (x-y)/z < 3))

» Code utilisant des opérateurs logiques :

bool un_test (true);

bool un autre test((x >= 0) ||
(

((xxy > 0) && !unTest));

Note : La norme (ISO/IEC 14882 :1998) définit aussi les formes
alternatives : and, or et not Parexemple ((x >= 0) or

((x+xy > 0) and

not un_test))

s pas toujours supporté par tous les compilateurs :-(

ICC (partie programmation) — Cours 4 : Structures de contréle —

13/40

Le type bool

Structures de
contrdle

Expressions
conditionnelles

Boucles et
itérations

bool est un type (au méme titre que char, int ou double)
» ne peux prendre que deux valeurs

» valeurs littérales : t rue, false
> représente de « valeurs de vérité », des conditions logiques

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

ICC (partie programmation) — Cours 4 : Structures de contrble — 12/40

Opérateurs logiques (2)

Les opérateurs logiques «&, | | et ! sont définis par les tables de
vérité usuelles :

cont

Expressions
conditionnelles
Boucles et
itérations

X y I'x X && vV | x|l vI|x Ay
true true false true true false
true false false false true true
false true true false true true
false false true false false false

©EPFL 2025-26

Jamila Sam

& Jean-Cédric Chappelier
cpre-
cPFL

ICC (partie programmation) — Cours 4 : Structures de contrle — 14 /40

Boucles et itérations Boucles et itérations (2)

Les boucles permettent la mise en oeuvre répétitive d’un

conditionnelles . conditionnelles
Boucles et tl’altement Boucles et
itérations itérations

> itérations générales («ala C»)

La répétition contrdlée par une condition de continuation. for (initialisation ; condition

; mise_a_jour) {

Instructions
> boucles conditionnelles a priori }
while (condition) {
Instructions

> itérations sur ensembles de valeurs (gﬂﬂ))

} w= plus tard (tableaux)
» boucles conditionnelles a posteriori for (declaration : ensemble)
do {

Instructions
} while (conditions);

©EPFL 2025-26

©EPFL 2025-26

Jamila Sam Jamila Sam

& Jean-Cédric Chappelier & Jean-Cédric Chappelier
-—pr- -—pr-
= P'- L ICC (partie programmation) — Cours 4 : Structures de contrle — 15/40 = P'- L

ICC (partie programmation) — Cours 4 : Structures de contrble — 16 /40

Boucles : Exemple Approfondissements

o Approfondissements
Exp s break et continue
conditionnelles

Boucles et

itérations

int i(5);

while (i > 1) { Du bon usage des booléens
cout << i << endl;

>
. . » Evaluation paresseuse
i=1/2; \ .
} » Choix multiples
» linstruction break
>

affichera l'instruction continue

©EPFL 2025-26 ©EPFL 2025-26

Jamila Sam Jamila Sam

& Jean-Cédric Chappelier & Jean-Cédric Chappelier
—pre mpre
= Pi' L ICC (partie programmation) — Cours 4 : Structures de contrle — 17 /40 = Pi' L ICC (partie programmation) — Cours 4 : Structures de contrle — 18 /40

Approfondissements

break et continue

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Approfondissements

break et continue

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Du bon usage des variables booléennes

Une variable booléenne représente une condition

= Inutile de la comparer explicitement a true ou false!

if (un_test)
Correct : if (lun_test)
return un_test;

if (un_test == true)
. if (un_test != true)
Non recommandeé : .
if (un_test == false)
if (un_test != false)

ICC (partie programmation) — Cours 4 : Structures de contrle — 19/40

Choix multiples

On peut écrire de fagon plus claire I'enchainement de plusieurs
conditions dans le cas ou I'on teste différentes valeurs d’'une

expression

Avec if ..else Avec switch

if (1 == 1) switch (i)
Instructionsl {
else if (i == 12) case 1:
Instructions? Instructionsl
else if break;
else case 12:
InstructionsN+1 Instructions?2
break;
case
default:
InstructionsN+1

}

= chaque case correspond a une constante int (ou
équivalent) ou char

ICC (partie programmation) — Cours 4 : Structures de contrle — 21/40

Evaluation « paresseuse »

)

Les opérateurs logiques s et | | effectuent une évaluation
Approfondissements ¢« paresseuse » (“lazy evaluation”) de leur arguments :

I'évaluation des arguments se fait de la gauche vers la droite et seuls les
arguments strictement nécessaires a la détermination de la valeur
logique sont évalués.

Ainsi, dans X1 && X2 && && Xn, les arguments xi ne
sont évalués que jusqu’au 1er argument faux (s'il existe, auquel
cas I'expression est fausse, sinon I'expression est vraie) ;

Exemple:dans (i != 0) && (3/i < 25) le secondterme ne
sera effectivement évalué uniquement si i est non nul. La division
par i ne sera donc jamais erronée.

Etdans x1 || x2 || ... || Xn,les arguments ne sont évalués
que jusqu’au 1er argument vrai (s'il existe, auquel cas I'expression
est vraie, sinon I'expression est fausse).

©EPFL 2025-26

Exemple:dans (i == 0) || (3/i < 25) le secondterme ne
Jamila Sam . 7 7 . .
sreancesiconappeier — S@1A €ffectivement évalué uniqguement si i est non nul.
':P':L
[™ L}

ICC (partie programmation) — Cours 4 : Structures de contrble — 20 /40

To break or not to break ...

Attention SiI'on ne met pas de break, I'exécution ne passe pas
approondissements @ 1@ fin du switch, mais continue avec les instructions du case
suivant :

switch (a+b) {
case 0: instructionl; // execution uniquement

break; // quand (a+b) vaut 0
case 2:
case 3: instruction2; // quand (a+b) vaut 2 ou 3
case 4:
case 8: instruction3; // quand (a+b) vaut 2, 3, 4
break; // ou 8

default: instructiond; // dans tous les autres cas

©EPFL 2025-26

Jamila Sam

& Jean-Cédric Chappelier
cpre-
cPFL

ICC (partie programmation) — Cours 4 : Structures de contrble — 22 /40

switch : un exemple

Approfondissements — St 'enchainement de conditions suivant :

break et continue

cout << "Entrez un entier: ;

int a; cin >> a;

Avec break

Approfondissements COde

break et continue

n

cout << "Entrez un entier: ;

int a; cin >> a;

switch (a) {

Exécution

Entrez un entier: O
To break

Entrez un entier: 1

if (a == 0) case 0
System.out.println("To break"); cout << "To break" << endl; or not
else break;)
if (a == 1) case 1 Entre% un entler:'99
cout << "or not" << endl; cout << "or not" << endl; that is the question
else break;
if (a == 2) case 2
cout << "to break" << endl; cout << "to break" << endl;
else break;
cout << "that is the question" << endl; default
cout <<
"that is the question" << endl;
Exercice : essayons de I'exprimer au moyen d’un switch ... }
©EPFL 2025-26 ©EPFL 2025-26
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier
E PF L ICC (partie programmation) — Cours 4 : Structures de contréle — 23 /40 E PF L ICC (partie programmation) — Cours 4 : Structures de contrle — 24 /40

Sans break switch Vs if. .else

Approfondissements

EXéCUtion break et continue

Approfondissements
break et continue Code
cout << "Entrez un entier: ";

. . Entrez un entier: 99
int a; cin >> a;

that is the question switch est moins général que if. .else:

switch (a
(a) { Entrez un entier: 2

case 0
cout << "To break" << endl; to break _ > La valeur sur laquell on teste doit étre soit char ou int
that is the question
case 1
cout << "or not" << endl; . ; N
case 2 Entrez un entier: 0 » Les cas doivent étre des constantes
cout << "to break" << endl; To break (pas de variables)
or not
default
to break

cout <<

"that is the question" << endl; that is the question

©EPFL 2025-26 ©EPFL 2025-26

Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier

[- P [- L [- P [- L
(=1 ICC (partie programmation) — Cours 4 : Structures de controle — 25/40 (=1 ad ICC (partie programmation) — Cours 4 : Structures de contrble — 26 /40

Sauts : break et continue Instructions break et continue

break et continue C++ fournit deux instructions prédéfinies, break et continue, break et continue
gg::l(zttant de contr6ler de fagon plus fine le déroulement d’'une hile (condition) {

» Si l'instruction break est exécutée au sein du bloc intérieur instructions de la boucle

de la boucle, I'exécution de la boucle est interrompue .
(quelque soit I'état de la condition de contrélle) ; break
» Sil'instruction cont inue est exécutée au sein du bloc

intérieur de la boucle, I'exécution du bloc est interrompue et la continue
condition de continuation est évaluée pour déterminer si e
I'exécution de la boucle doit étre poursuivie. }

instructions en sortie de la boucle

Conseil : En toute rigueur on n’aurait pas besoin de ces
instructions, et tout bon programmeur évite de les utiliser.

©EPFL 2025-26 ©EPFL 2025-26
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier

=PFL . . ; =PFL ; i 6

ICC (partie programmation) — Cours 4 : Structures de contrble — 27 /40 ICC (partie programmation) — Cours 4 : Structures de contrble — 28 /40
Breaking (it too) bad Instruction break : exemple
Exemple d'utilisation de break :
presketconte preakcetconine une mauvaise (!) fagon de simuler une boucle avec condition

d’arrét
while (true) {

. . . P . - . Instruction 1;
Pour la petite histoire, un bug lié a une mauvaise utilisation de

break; a conduit & I'effondrement du réseau téléphonique longue if (condition d arret)
distance d’AT&T, le 15 janvier 1990. Plus de 16’000 usagers break;

ont perdu l'usage de leur téléphone pendant prés de 9 heures. }

70’000°000 d’appels ont été perdus. autres instructions;

P. Van der Linden, Expert C Programming, 1994. . yr . .
[P 9 9] Question : quelle est la bonne fagon d’écrire le code ci-dessus ?

©EPFL 2025-26 ©EPFL 2025-26
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier

EPFL EPFL
= ICC (partie programmation) — Cours 4 : Structures de contrle — 29 /40 (=1 ad ICC (partie programmation) — Cours 4 : Structures de contréle — 30 /40

Instruction continue : exemple . Les structures de controle Z'

Exemple d'utilisation de continue : les branchements conditionnels : si ... alors ...
1f (condition) switch (expression) {
break et continue lnt l; break et continue instructions case valeur:
e L instructions;
i =0; . S break;
7 if (condition 1)
wh:i? (i < 100) { instructions 1 default :
i; L . . .
if ((i % 2) == 0) continue; else ift (Cozqitio; N) : instructions;
// L’execution de la suite des instructions elsems ructrons
// ne se fait pour les entiers impairs instructions N+1
Instructions;
les boucles conditionnelles : fant que ...
} while (condition) do
. . v Instructions Instructions
Question : quelle est une meilleure fagon d’écrire le code while (condition);
ci-dessus ? o -
. . , les itérations : pour ... allant de ... a ...
(on suppose que Instructions; ... ne modifie pas la valeur de i) for (initialisation ; condition ; Increment)
| instruction
les sauts : break; et continue;
Note : instructions représente une instruction élémentaire ou un bloc.
©EPFL 2025-26 ©EPFL 2025-26 , . m . sy s .
Jamila Sam ‘ Jamila Sam ‘ instructions; représente une suite d’instructions élémentaires.
& Jean-Cédric Chappelier & Jean-Cédric Chappelier
-pr- -pr-
EPI'L ICC (partie programmation) — Cours 4 : Structures de contrle — 31/40 cP'-L ICC (partie programmation) — Cours 4 : Structures de contrble — 32/40

Etude de cas Etude de cas

Comment calculer I'expression suivante sans produire d’erreur
Flude de czs Flude de cas (i.e. sans « Nan », « Not a number »)?

V20+7x—x2 log (#)

55— log (x3—3x+7) — %

» calculer des valeurs de la fonction

V20+7x—x2 log (ﬁ)

f . +
(x) = :
x \/|og (X3 —3x+7) £ w DECOMPOSER
10 ° Traiter « petit bout par petit bout »
Par exemple :
if (x + 5.0 == 0.0) {
cerr << "Expression invalide pour x=" << x
<< " : division par 0" << endl;
return 1; // On sort avec un code d’erreur
}
©EPFL 2025-26 ©EPFL 2025-26
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier

c=PrL

cpr-
ICC (partie programmation) — Cours 4 : Structures de contrle — 33 /40 = Pi' L ICC (partie programmation) — Cours 4 : Structures de contrble — 34 /40

Etude de cas

Bien sdr, on suppose gu’au préalable x ait été déclaré et ait une

valeur, par exemple saisie au clavier :

double x(0.0);
cout << "Entrez une valeur pour x : ";
cin >> x;

On pourrait alors continuer le code par exemple comme suit :

Etude de cas

double x(0.0);
cout << "Entrez une valeur pour x : ";
cin >> x;

if (x + 5.0 == 0.0) {
cerr << "Expression invalide pour x=" << x
<< " : division par 0" << endl;
return 1;

}

if (x + 5.0 < 0.0) {
cerr << "Expression invalide pour x=" << x
<< " : logarithme d’un nombre négatif" << endl;
return 1;

}

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

ICC (partie programmation) — Cours 4 : Structures de contrle — 35/40

Etude de cas

Etude de cas

Solution : introduire une variable auxiliaire,
qui réprésente justement le fait que ce soit la méme chose :

double auxiliaire(x + 5.0);

if (auxiliaire == 0.0) {
cerr << "Expression invalide pour x=" << x
<< " : division par 0" << endl;

return 1;

}

if (auxiliaire < 0.0) {
cerr << "Expression invalide pour x=" << x
<< " : logarithme d’un nombre négatif" << endl;
return 1;

}

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

ICC (partie programmation) — Cours 4 : Structures de contrle — 37 /40

Etude de cas

Etude de cas Mais ce code présente un gros défaut!

if (x + 5.0 == 0.0) {
cerr << "Expression invalide pour x=" << x
<< " : division par 0" << endl;
return 1;

}

if (x + 5.0 < 0.0) { // x + 5.0 COPIEE-COLLEE !!
cerr << "Expression invalide pour x=" << x
<< " : logarithme d’un nombre négatif" << endl;
return 1;

}
JAMAIS DE « COPIER-COLLER »!

Dans du code, il ne faut jamais avoir deux fois la méme chose!
= problémes de maintenance (corrections futures du code)

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

ICC (partie programmation) — Cours 4 : Structures de contrble — 36 /40

Etude de cas

On peut ensuite continuer dans le méme esprit,

Etude de cas en utilisant si nécessaire une seconde variable :
V2R
if (auxiliaire < 0.0) {
cerr << "Expression invalide pour x=" << x
<< " : logarithme d’un nombre négatif" << endl;

return 1;

}

double resultat (log(l.0 / auxiliaire));

auxiliaire = 20.0 + 7.0xx — x*x;
if (auxiliaire <= 0.0) {
cerr << "Expression invalide pour x=" << x
<< " : racine d’un nombre négatif" << endl;

return 1;

}
resultat x= sqgrt(auxiliaire);

// etc.

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

ICC (partie programmation) — Cours 4 : Structures de contrle — 38 /40

Etude de cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Qu’en est-il des problemes de précision ?

Les comparaisons exactes entre double peuvent étre erronées en
raison de problémes de précision.

Ainsi x+0.5 == 0 peut (alors que I'on pense x valoir -5.0) retourner
false au lieu de true si par exemple x est obtenue par calcul!

En pratique, lorsque cela est rendu possible par le domaine
d’application, on fait souvent des comparaisons a un espilon
pres :

constexpr PRECISION (le-8);

if (abs(x + 0.5) <= PRECISION) ({
Y/

}
Néamoins, il ne s’agit alors plus d’une résolution mathématique du
probléme !
Si I'on veut faire des mathématiques avec un ordinateur, il faut soit
admettre que les résultats ne sont pas garantis (ce que vous allez faire
dans les exercices de cette semaine), soit avoir recours a d’autres
procédés plus complexes (arithmétique des intervalles par exemple, mais
c’est tout un domaine!)

ICC (partie programmation) — Cours 4 : Structures de contrle — 39 /40

Pour préparer le prochain cours

Approfondissements

> Vidéos et quiz du MOOC semaine 4 :

Fonctions : introduction [16 :07]

Fonctions : appels [09 :35]

Fonctions : passage des arguments [09 :29]
Fonctions : prototypes [05 :56]

Fonctions : méthodologie [10 :21]

v

vvyyvyy

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

L= P L= L
=i ICC (partie programmation) — Cours 4 : Structures de contrble — 40 /40

	Support MOOC
	Complément sur les variables
	auto et constantes

	Concepts centraux
	Structures de contrôle
	Expressions conditionnelles
	Boucles et itérations

	Approfondissements
	break et continue

	Etude de cas
	Approfondissements

