Support MOOC

Complément sur
les variables

Concepts
centraux

Approfondissements
Etude de cas

Approfondissements

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Information, Calcul et Communication
(partie programmation) :

Structures de controle

Jamila Sam

Laboratoire d’Intelligence Artificielle
Faculté 1&C

ICC (partie programmation) — Cours 4 : Structures de controle — 1/40

=enoe \fidéos, transparents et quiz

www.coursera.org/learn/initiation-programmation-cpp/

i Semaine 3 (et 2)

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 4 : Structures de contrle — 2/40

https://www.coursera.org/learn/initiation-programmation-cpp/

auto et constantes

En Gﬂ‘m, on peut laisser le compilateur deviner le type d’'une
variable grace au mot-clé auto.

Le type de la variable est déduit du contexte. Il faut donc qu'il y ait
un contexte, c’est-a-dire une initialisation.

Par exemple :
auto val(2);
auto j(2%1i+5);
auto x(7.2835);

Conseil : N'abuser pas de cette possibilité et explicitez vos types
autant que possibles.

N’utilisez auto que dans les cas « techniques », par exemple (qui
viendra plus tard dans le cours) :

for (auto p = v.begin(); p != v.end(); ++p)
au lieu de
for (vector<int>::iterator
i p = v.begin(); p != v.end(); ++p)
& Jean-Cédric Ghappelier
=PFL

ICC (partie programmation) — Cours 4 : Structures de contrle — 3/40

Données modifiables/non modifiables

auto et constantes
Par défaut, les variables en C++ sont modifiables.

Si I'on ne souhaite pas modifier une « variable » apres son
initialisation : la définir comme constante (pour ce nom la
uniguement)

La nature modifiable ou non modifiable d’'une donnée au travers
de ce nom peut étre définie lors de la déclaration par 'indication
du mot réservé const.

Elle ne pourra plus étre modifiée par le programme en utilisant ce
nom (toute tentative de modification via ce nom produira un
message d’erreur lors de la compilation).

Exemples :
int const couple(2);
double const g(9.81);

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L ICC (partie programmation) — Cours 4 : Structures de controle — 4 /40

auto et constantes

En C++11, il existe aussi le mot clé constexpr.

Il est d'utilisation plus générale, mais est aussi plus contraignant
que const : la valeur initiale doit pouvoir étre calculée a la
compilation.

= Les deux (const et constexpr) sont donc trés différents!

> const indique au compilateur qu’'une donnée ne changera pas
de valeur au travers de ce nom ; mais
1. le compilateur peut trés bien ne pas connaitre la valeur en
question au moment de la compilation ; et
2. cette valeur pourrait changer par ailleurs.

» constexpr indique au compilateur qu’une donnée ne
changera pas du tout de valeur et qu’il doit pouvoir en calculer
la valeur au moment de la compilation (i.e. cette valeur ne dépend
pas de ce qu'’il va se passer plus tard dans le programme).

Conseil : Si ces deux conditions sont vérifiées, on préférera
GEPFL 2025-26 utiliser constexpr.

Jamila Sam
& Jean-Cédric Chappelier

cPrL

ICC (partie programmation) — Cours 4 : Structures de contrle — 5/40

woes - J’écris @ mes amis

Concepts
centraux
3‘“‘09‘"65 de // Programme ami.cc
contréle
Expressions #include <iostream>
conditionnelles using namespace std;
Boucles et int main ()
itérations

{
Approfondi

string nom;
Etude de cas string adresse;

Approfondissements
// Lecture des donnee

cout << "Donnez le nom de votre ami : " ;
cin >> nom;

cout << "Donnez l’adresse de votre ami : " ;
cin >> adresse;

// Impression de l’etiquette

cout << nom << endl;
cout << adresse << endl;

= Exécution linéaire

(©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

E P F L ICC (partie programmation) — Cours 4 : Structures de contréle — 6 /40

Structures de
contréle

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Structures de controle

C++ (comme la plupart des langages de programmation) permet
la représentation d’enchainements plus complexes grace aux
structures de controle

A quoi ca sert?
Une structure de contrdle sert a modifier I'ordre linéaire
d’exécution d’un programme.

= faire exécuter a la machine des taches de fagon répétitive, ou
en fonction de certaines conditions (ou les deux).

ICC (partie programmation) — Cours 4 : Structures de contrle — 7 /40

Les différentes structures de controle

On distingue 3 types de structures de contréle :
Structures de g .
conitle les branchements conditionnels : si ... alors ...

Boucl
itérations

SiA=0
x<——§
Sinon

3

les boucles conditionnelles : tant que ...

Tant que réponse non valide
poser la question

les itérations : pour ... allant de ... a ..., pour ... parmi ...

5 4 x+0
X:Z* Pouride1a5s
i2 1
i=1 X +— X+ 7
©EPFL 2025-26

Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 4 : Structures de contréle — 8/40

Les différentes structures de controle

On distingue 3 types de structures de contréle :
Structures de g .
conroe les branchements conditionnels : si ... alors ...

les boucles conditionnelles : tant que ...

les itérations : pour ... allant de ... a ..., pour ... parmi ...

Note : on peut toujours (évidemment!) faire des itérations en
utilisant des boucles :

x+0

i1

Tantque i <5
xex+%
i+ i+1

mais conceptuellement (et syntaxiquement aussi dans certains langages)
il y a une différence.

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 4 : Structures de contrle — 8/40

Les différentes structures de controle

On distingue 3 types de structures de contréle :
Structures de g .
conitle les branchements conditionnels : si ... alors ...

les boucles conditionnelles : tant que ...

les itérations : pour ... allant de ... a ..., pour ... parmi ...

Les définitions de ces diverses structures de contrle reposent sur
les notions de condition et de bloc d’instructions.

Une condition est une expression logique telle que définie au
cours précédent.

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 4 : Structures de contréle — 8/40

Structures de
contréle
Expressions
conditionnelles
Boucles et
itérations

(©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Retour a notre premier exemple

Résolution d’une équation du second degré : x° + b x +c =0

#include <iostream>
#include <cmath>
using namespace std;
main () |
double b(0.0);
double c(0.0);
double delta(0.0);

cin >> b >> c;

delta = bxb - 4xc;
if (delta < 0.0) {
cout << "pas de solutions reelles"
} else if (delta == 0.0) {
cout << "une solution unique
} else {
cout << "deux solutions : " <<
<< " oet " <<
}
}
données
traitements
structures de contréle

<< endl;
" << -b/2.0 << endl;

(-b-sqgrt (delta)) /2.0

(-b+sgrt (delta)) /2.0 << endl;

ICC (partie programmation) — Cours 4 : Structures de contréle — 9/40

Conditions

Expressions
conditionnelles

ations Pour exprimer des conditions
= Opérateurs de comparaison et opérateurs logiques

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 4 : Structures de controle — 10/40

Opérateurs de comparaison

Les opérateurs de comparaison (relationnels) sont :
Expressions.
conditionnelles

Boucis o == égalité
!= non égalité
< inférieur
> supérieur
<= inférieur ou égal
>= supérieur ou égal

Leur résultat est un booléen (true ou false)
Exemples (expressions logiques avec opérateur de comparaison) :

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 4 : Structures de controle — 11/40

Le type bool

Expressions.
conditionnelles

o
bool est un type (au méme titre que char, int ou double)
» ne peux prendre que deux valeurs
» valeurs littérales : true, false
> représente de « valeurs de vérité », des conditions logiques

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 4 : Structures de controle — 12/40

Opérateurs logiques

On peut combiner des expressions logiques au moyen
d’opérateurs logiques :

Expressions.
conditionnelles &&

!

“et” logique

ou
négation

(Remarque : cet opérateur n’a qu’'un seul opérande)

Exemples :
> Expression logique utilisant des opérateurs logiques :

((z !=0)

&§& (2% (x-y)/z < 3))

» Code utilisant des opérateurs logiques :

bool un_test (true);
bool un_autre_test ((x >= 0) ||

((xxy > 0) && !'unTest));

Note : La norme (ISO/IEC 14882 :1998) définit aussi les formes
alternatives : and, or et not Parexemple ((x >= 0) or

©EPFL 2025-26 ((X* y > O)

Jamila Sam

and not un_test))

sdeanedric chappelir g NAS tOUjOUrs sUpporté par tous les compilateurs :-(

cPrL

ICC (partie programmation) — Cours 4 : Structures de controle — 13 /40

Opérateurs logiques (2)

. Les opérateurs logiques s s, | | et ! sont définis par les tables de
Exprssions vérité usuelles :

conditionnelles

X vy Ix X & y | x|l yv|x ANy
true true false true true false
true false false false true true
false true true false true true
false false true false false false

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 4 : Structures de controle — 14 /40

Boucles et itérations

Les boucles permettent la mise en oeuvre répétitive d’'un
Bouceset traitement.

itérations

La répétition contrélée par une condition de continuation.

» boucles conditionnelles a priori
while (condition) {
Instructions

}

» boucles conditionnelles a posteriori
do {
Instructions
} while (conditions);

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 4 : Structures de contrdle — 15/40

Boucles et
itérations

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Boucles et itérations (2)

> itérations générales («a la C»)
for (initialisation
Instructions

; condition ; mise_a_jour)

}
> itérations sur ensembles de valeurs (w‘ﬂ))

= plus tard (tableaux)

for (declaration : ensemble)

ICC (partie programmation) — Cours 4 : Structures de controle — 16 /40

Boucles : Exemple

conditionnelles
Boucles et
itérations . .
int i(5);
while (i > 1) {
cout << 1 << endl;
i=1/2;
}
affichera
©EPFL 2025-26
Jamila Sam

& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 4 : Structures de controle — 17 /40

Approfondissements

Approfondissements

» Du bon usage des booléens

» Evaluation paresseuse

» Choix multiples

> linstruction break

» [instruction cont inue
S

& Jean-Cédric Chappelier

-
E P'— L ICC (partie programmation) — Cours 4 : Structures de contréle — 18/40

Du bon usage des variables booléennes

Une variable booléenne représente une condition

Approfondissements
break et continue

w Inutile de la comparer explicitement & t rue ou false!

if (un_test)
Correct : if (!un_test)
return un_test;

if (un_test == true)
.. if (un_test != true)
Non recommandé : .
if (un_test == false)
if (un_test != false)

(©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 4 : Structures de controle — 19/40

V4

Les opérateurs logiques s et | | effectuent une évaluation
Approfondissements — « paresseuse » (“lazy evaluation’) de leur arguments :

I'évaluation des arguments se fait de la gauche vers la droite et seuls les
arguments strictement nécessaires a la détermination de la valeur
logique sont évalués.

Ainsi, dans X1 &s& X2 && ... && Xn,lesarguments xXi ne
sont évalués que jusqu’au 1er argument faux (s'il existe, auquel
cas I'expression est fausse, sinon I'expression est vraie) ;

Exemple :dans (i != 0) && (3/1i < 25) le second terme ne
sera effectivement évalué uniqguement si i est non nul. La division
par i ne sera donc jamais erronée.
Etdans x1 || x2 || ... || Xn,les arguments ne sont évalués
que jusqu’au 1er argument vrai (s'il existe, auquel cas I'expression
est vraie, sinon I'expression est fausse).

cepr. 2525 Exemple :dans (i == 0) || (3/i < 25) le second terme ne

ssencenccrappeier - SE1A €ffectivement évalué uniquement si i est non nul.

-
E P'— L ICC (partie programmation) — Cours 4 : Structures de controle — 20 /40

Choix multiples

On peut écrire de facon plus claire 'enchainement de plusieurs
pproioncissements CONAitions dans le cas ou I'on teste différentes valeurs d’'une

expression
Avec if ..else Avec switch
if (i == 1) switch (1)
Instructionsl {
else if (i == 12) case 1:
Instructions?2 Instructionsl
else if ... break;
else case 12:
InstructionsN+1 Instructions?2
break;
case
default:
InstructionsN+1

}

= chaque case correspond a une constante int (ou
GEPFL 2025-26 équivalent) OuU char

Jamila Sam
& Jean-Cédric Chappelier

cPrL

ICC (partie programmation) — Cours 4 : Structures de controle — 21/40

To break or not to break ...

Attention Si 'on ne met pas de break, 'exécution ne passe pas
pproonissemenss @ 1@ fin du switch, mais continue avec les instructions du case
break et continue H

suivant :

switch (a+b) {
case 0: instructionl; // execution uniquement

break; // quand (a+b) vaut 0
case 2:
case 3: instruction2; // quand (a+b) vaut 2 ou 3
case 4:
case 8: instruction3; // quand (a+b) vaut 2, 3, 4
break; // ou 8

default: instructiond; // dans tous les autres cas

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L ICC (partie programmation) — Cours 4 : Structures de controle — 22 /40

switch : un exemple

Approfondissements — St 'enchainement de conditions suivant :

break et continue

cout << "Entrez un entier: ";

int a; cin >> a;

if (a == 0)
System.out.println ("To break");
else
if (a == 1)
cout << "or not" << endl;
else
if (a == 2)
cout << "to break" << endl;
else

cout << "that is the question" << endl;

Exercice : essayons de I'exprimer au moyen d’un switch ...

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 4 : Structures de controle — 23 /40

Avec break

Approfondissements Code Exécution

break et continue

cout << "Entrez un entier: ";

X . Entrez un entier: O
int a; cin >> a;

To break

switch (a) {

Entrez un entier: 1
case 0

or no
cout << "To break" << endl; €

break;

Entrez un entier: 99
case 1

cout << "or not" << endl; that is the question

break;
case 2
cout << "to break" << endl;
break;
default
cout <<
"that is the question" << endl;

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

E PF L ICC (partie programmation) — Cours 4 : Structures de contrdle — 24 /40

Sans break

Approfondissements

break et continue Code

cout << "Entrez un entier: ";

int a; cin >> a;

switch (a) {

case 0 :

cout << "To break" << endl;
case 1

cout << "or not" << endl;
case 2 :

cout << "to break" << endl;
default

cout <<
"that is the question" << endl;

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

Exécution

Entrez un entier: 99
that is the question

Entrez un entier: 2
to break
that is the question

Entrez un entier: O
To break

or not

to break

that is the question

E PF L ICC (partie programmation) — Cours 4 : Structures de contréle — 25/ 40

switch VS if. .else

Approfondissements

break et continue
switch est moins général que if. .else:
» La valeur sur laquell on teste doit étre soit char ou int
» Les cas doivent étre des constantes
(pas de variables)

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier
=PFL

ICC (partie programmation) — Cours 4 : Structures de controle — 26 /40

Sauts : break et continue

break o continue C++ fournit deux instructions prédéfinies, break et continue,
permettant de contréler de fagon plus fine le déroulement d’une
boucle.

» Sil'instruction break est exécutée au sein du bloc intérieur
de la boucle, I'exécution de la boucle est interrompue
(quelque soit I'état de la condition de contrélle);

» Sil'instruction continue est exécutée au sein du bloc
intérieur de la boucle, I'exécution du bloc est interrompue et la
condition de continuation est évaluée pour déterminer si
I'exécution de la boucle doit étre poursuivie.

Conseil : En toute rigueur on n’aurait pas besoin de ces
instructions, et tout bon programmeur évite de les utiliser.

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPrL

ICC (partie programmation) — Cours 4 : Structures de contrdle — 27 /40

Instructions break et continue

break et continue

while (condition) {
;'r'i.:structions de la boucle
break

;;-o.nti nue

instructions en sortie de la boucle

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 4 : Structures de controle — 28 /40

Breaking (it too) bad

break et continue

Pour la petite histoire, un bug li¢ a une mauvaise utilisation de
break; a conduit a I'effondrement du réseau téléphonique longue
distance d’AT&T, le 15 janvier 1990. Plus de 16’000 usagers
ont perdu l'usage de leur téléphone pendant prés de 9 heures.

70’000°000 d’appels ont été perdus.
[P. Van der Linden, Expert C Programming, 1994.]

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L ICC (partie programmation) — Cours 4 : Structures de contrdle — 29 /40

Instruction break : exemple

Exemple d'utilisation de break :
preak etconinue une mauvaise (!) fagon de simuler une boucle avec condition
d'arrét
while (true) {
Instruction 1;

if (condition_d_arret)
break;

}

autres instructions;

Question : quelle est la bonne fagon d’écrire le code ci-dessus ?

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L ICC (partie programmation) — Cours 4 : Structures de controle — 30 /40

Instruction continue : exemple

Exemple d'utilisation de continue :
break et continue int l ,.
i = 0;
while (i < 100) {
++1;
if ((i $ 2) == 0) continue;
// L’execution de la suite des instructions
// ne se fait pour les entiers impairs
Instructions;

}

Question : quelle est une meilleure fagon d’écrire le code
ci-dessus ?

(on suppose que Instructions; ... ne modifie pas la valeur de i)

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 4 : Structures de controle — 31/40

z Les structures de contréle W/

. alors ...

les branctgements conditionnels : si

(condition)

switch (expression) {

break et continue instructions case valeur:
........................ instructions;
. c break;
if (condition 1) !
instructions 1 s
default:

else if (condition N) instructions;
instructions N ;

else
instructions N+1

les boucles conditionnelles : fant que ...

while (condition) do
Instructions

Instructions
while (condition);

les itérations : pour ... allant de ... a

‘for (initialisation ; condition ; iIncrement)
instruction

les sauts : break; et continue;

Note : instructions représente une instruction élémentaire ou un bloc.
©EPFL 2025-26 P . 3 . JA V4 .
Jamia Sam instructions; représente une suite d’instructions élémentaires.

& Jean-Cédric Chappelier

E PF L ICC (partie programmation) — Cours 4 : Structures de controle — 32 /40

Etude de cas

Etude de cas

» calculer des valeurs de la fonction
V20+7x—x2log (=
f(X) . (X+5)

55— \/log (x3—3x+7) - £

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 4 : Structures de controle — 33 /40

Etude de cas

Comment calculer I'expression suivante sans produire d’erreur
Ftude de cas (i.e. sans « Nan », « Not a number »)?

\/mlog (X%)

55— /log (x3 —3x+7) - &

= DECOMPOSER
Traiter « petit bout par petit bout »

Par exemple :
if (x + 5.0 == 0.0) {
cerr << "Expression invalide pour x=" << x
<< " : division par 0" << endl;

return 1; // On sort avec un code d’erreur

}

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 4 : Structures de controle — 34 /40

Etude de cas

Bien sdr, on suppose qu’au préalable x ait été déclaré et ait une

valeur, par exemple saisie au clavier :
double x(0.0);

cout << "Entrez une valeur pour x : ";
cin >> x;

On pourrait alors continuer le code par exemple comme suit :

Etude de cas

double x(0.0);
cout << "Entrez une valeur pour x : "
cin >> x;

if (x + 5.0 == 0.0) {
cerr << "Expression invalide pour x=" << x
<< " : division par 0" << endl;
return 1;
}

if (x + 5.0 < 0.0) |
cerr << "Expression invalide pour x=" << x
<< " : logarithme d’un nombre négatif" << endl;
return 1;
}

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 4 : Structures de controle — 35/ 40

Etude de cas

Etude de cas Mais ce code présente un gros défaut!
if (x + 5.0 == 0.0) {
cerr << "Expression invalide pour x=" << x
<< " : division par 0" << endl;
return 1;

}

if (x + 5.0 < 0.0) { // x + 5.0 COPIEE-COLLEE !!
cerr << "Expression invalide pour x=" << x
<< " : logarithme d’un nombre négatif" << endl;

return 1;

}

JAMAIS DE « COPIER-COLLER »!

Dans du code, il ne faut jamais avoir deux fois la méme chose!
e problémes de maintenance (corrections futures du code)

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 4 : Structures de contréle — 36 /40

Etude de cas

Etude de cas

Solution : introduire une variable auxiliaire,
qui réprésente justement le fait que ce soit la méme chose :

double auxiliaire(x + 5.0);

if (auxiliaire == 0.0) {
cerr << "Expression invalide pour x=" << x
<< " : division par 0" << endl;

return 1;

}

if (auxiliaire < 0.0) {
cerr << "Expression invalide pour x=" << x

<< " : logarithme d’un nombre négatif" << endl;
return 1;

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

cPFL

ICC (partie programmation) — Cours 4 : Structures de contrdle — 37 /40

Etude de cas

On peut ensuite continuer dans le méme esprit,

Etude de cas en utilisant si nécessaire une seconde variable :
//
if (auxiliaire < 0.0) {
cerr << "Expression invalide pour x=" << x
<< " : logarithme d’un nombre négatif" << endl;

return 1;

}

double resultat (log (1.0 / auxiliaire));

auxiliaire = 20.0 + 7.0%x - X*Xx;
if (auxiliaire <= 0.0) {
cerr << "Expression invalide pour x=" << x
<< " : racine d’un nombre négatif" << endl;

return 1;

}
resultat = sqgrt(auxiliaire);

// etc.

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L ICC (partie programmation) — Cours 4 : Structures de controle — 38 /40

Qu’en est-il des problemes de précision ?

Les comparaisons exactes entre double peuvent étre erronées en
raison de problemes de précision.

Ainsi x+0.5 == 0 peut (alors que I'on pense x valoir -5.0) retourner
false au lieu de true si par exemple x est obtenue par calcul !

En pratique, lorsque cela est rendu possible par le domaine
d’application, on fait souvent des comparaisons a un espilon
pres :

constexpr PRECISION (le-8);

Etude de cas

if (abs(x + 0.5) <= PRECISION) {
I/
}

Néamoins, il ne s’agit alors plus d’une résolution mathématique du

probléeme!

Si I'on veut faire des mathématiques avec un ordinateur, il faut soit

admettre que les résultats ne sont pas garantis (ce que vous allez faire

dans les exercices de cette semaine), soit avoir recours a d’autres
GEPFL 202520 procédés plus complexes (arithmétique des intervalles par exemple, mais
& Jeancéarecrapeter ’ast tout un domaine !)
EPFL ICC (partie programmation) — Cours 4 : Structures de controle — 39 /40

Pour préparer le prochain cours

Approfondissements

» Vidéos et quiz du MOOC semaine 4 :

» Fonctions : introduction [16 :07]

> Fonctions : appels [09 :35]

» Fonctions : passage des arguments [09 :29]
» Fonctions : prototypes [05 :56]

» Fonctions : méthodologie [10 :21]

©EPFL 2025-26
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L ICC (partie programmation) — Cours 4 : Structures de controle — 40 /40

	Support MOOC
	Complément sur les variables
	auto et constantes

	Concepts centraux
	Structures de contrôle
	Expressions conditionnelles
	Boucles et itérations

	Approfondissements
	break et continue

	Etude de cas
	Approfondissements

