
Compléments
semaine 2

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Information, Calcul et Communication
(partie programmation) :

Branchements conditionnels

Jamila Sam

Laboratoire d’Intelligence Artificielle
Faculté I&C

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 1 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Plan

▶ Quelques compléments de la semaine 2
▶ Approfondissements

▶ Étude de cas
▶ Du bon usage des booléens
▶ Évaluation paresseuse
▶ Choix multiples

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 2 / 38

Compléments
semaine 2
Cycle de
développement

auto et constantes

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Le langage C++ (1)

▶ Extension objet du langage C
▶ Développé initialement par Bjarn Stroustrup (1983-1985)
▶ Normalisé ISO en 1998, 2002 et 2011

Le C date de 1969-1973.

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 3 / 38

Compléments
semaine 2
Cycle de
développement

auto et constantes

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Le langage C++ (2)

Plus précisément, le langage C++ est un langage orienté-objet
compilé fortement typé :

C++ = C + typage fort + objets

Parmi les avantages de C++, on peut citer :
▶ Un des langages objets les plus utilisés
▶ Un langage compilé, ce qui permet la réalisation

d’applications efficaces (disponibilité d’excellents
compilateurs open-source (GNU))

▶ Un typage fort, ce qui permet au compilateur d’effectuer de
nombreuses vérifications lors de la compilation⇒ moins de
« bugs »...

▶ Un langage disponible sur pratiquement toutes les
plate-formes ;

▶ Similarité syntaxique et facilité d’interfaçage avec le C

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 4 / 38

Compléments
semaine 2
Cycle de
développement

auto et constantes

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Le langage C++ (3)

. . . et les inconvénients :

▶ Similarité syntaxique avec le C !
▶ Pas nécessairement de gestion automatique de la mémoire
▶ Pas de protection de la mémoire
▶ Syntaxe parfois lourde et peu intuitive (“pousse-au-crime”)
▶ Gestion facultative des exceptions
▶ Effets parfois indésirables et peu intuitifs dus à la production

automatique de code

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 5 / 38

Compléments
semaine 2
Cycle de
développement

auto et constantes

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Cycle de développement (1)

fichier source fichier exécutable

commande : g++ hello.cc -o hello

hello.cc

#include <iostream>
using namespace std;

main() {

cout << "Hello World!" << endl;
}

hello
010100001010101

001010101001110

101111001010001

...

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 6 / 38

Compléments
semaine 2
Cycle de
développement

auto et constantes

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Cycle de développement (2)

Programmer c’est :
➀ réfléchir au problème ; concevoir l’algorithme
➁ traduire cette réflexion en un texte exprimé dans un langage

donné (écriture du programme source)
➂ traduire ce texte sous un format exécutable par un processeur

(compilation, c++ ou g++)
➃ exécution du programme

En pratique :
▶ erreurs de compilation (mal écrit)
▶ erreurs d’exécution (mal pensé)

=⇒ correction(s) ☞ d’où le(s) cycle(s) !

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 7 / 38

Compléments
semaine 2
Cycle de
développement

auto et constantes

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Données et traitements

Un programme C++ est donc à la base un ensemble de
traitements s’effectuant sur des données.

Algorithme structures de données
Traitements Données

Variables
Expressions & Opérateurs
Structures de contrôle
Fonctions Portée

Chaînes de caractères
Tableaux statiques
Tableaux dynamiques
Structures
Pointeurs

Entrées/Sorties

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 8 / 38

Compléments
semaine 2
Cycle de
développement

auto et constantes

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

auto

En , on peut laisser le compilateur deviner le type d’une
variable grace au mot-clé auto.

Le type de la variable est déduit du contexte. Il faut donc qu’il y ait
un contexte, c’est-à-dire une initialisation.

Par exemple :
auto val(2);
auto j(2*i+5);
auto x(7.2835);

Conseil : N’abuser pas de cette possibilité et explicitez vos types
autant que possibles.
N’utilisez auto que dans les cas « techniques », par exemple (qui
viendra plus tard dans le cours) :
for (auto p = v.begin(); p != v.end(); ++p)

au lieu de
for (vector<int>::iterator

p = v.begin(); p != v.end(); ++p)

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 9 / 38

Compléments
semaine 2
Cycle de
développement

auto et constantes

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Données modifiables/non modifiables

Par défaut, les variables en C++ sont modifiables.

Si l’on ne souhaite pas modifier une « variable » après son
initialisation : la définir comme constante (pour ce nom là
uniquement)

La nature modifiable ou non modifiable d’une donnée au travers
de ce nom peut être définie lors de la déclaration par l’indication
du mot réservé const.

Elle ne pourra plus être modifiée par le programme en utilisant ce
nom (toute tentative de modification via ce nom produira un
message d’erreur lors de la compilation).

Exemples :
int const couple(2);
double const g(9.81);

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 10 / 38

Compléments
semaine 2
Cycle de
développement

auto et constantes

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Expressions constantes

En C++11, il existe aussi le mot clé constexpr.

Il est d’utilisation plus générale, mais est aussi plus contraignant
que const : la valeur initiale doit pouvoir être calculée à la
compilation.

☞ Les deux (const et constexpr) sont donc très différents !

▶ const indique au compilateur qu’une donnée ne changera pas
de valeur au travers de ce nom; mais

1. le compilateur peut très bien ne pas connaître la valeur en
question au moment de la compilation ; et

2. cette valeur pourrait changer par ailleurs.

▶ constexpr indique au compilateur qu’une donnée ne
changera pas du tout de valeur et qu’il doit pouvoir en calculer
la valeur au moment de la compilation (i.e. cette valeur ne dépend
pas de ce qu’il va se passer plus tard dans le programme).

Conseil : Si ces deux conditions sont vérifiées, on préfèrera
utiliser constexpr.

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 11 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC
Structures de
contrôle

Expressions
conditionnelles

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Vidéos, transparents et quiz

www.coursera.org/learn/initiation-programmation-cpp/

☞ Semaine 2

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 12 / 38

https://www.coursera.org/learn/initiation-programmation-cpp/

Compléments
semaine 2

Concepts
centraux

Support MOOC
Structures de
contrôle

Expressions
conditionnelles

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

J’écris à mes amis

// Programme ami.cc
#include <iostream>
using namespace std;
int main()
{

string nom;
string adresse;

// Lecture des donnee
cout << "Donnez le nom de votre ami : " ;
cin >> nom;

cout << "Donnez l’adresse de votre ami : " ;
cin >> adresse;

// Impression de l’etiquette

cout << nom << endl;
cout << adresse << endl;

}

☞ Exécution linéaire

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 13 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC
Structures de
contrôle

Expressions
conditionnelles

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Structures de contrôle

C++ (comme la plupart des langages de programmation) permet
la représentation d’enchaînements plus complexes grâce aux
structures de contrôle

À quoi ça sert ?
Une structure de contrôle sert à modifier l’ordre linéaire
d’exécution d’un programme.

☞ faire exécuter à la machine des tâches de façon répétitive, ou
en fonction de certaines conditions (ou les deux).

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 14 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC
Structures de
contrôle

Expressions
conditionnelles

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Les différentes structures de contrôle

On distingue 3 types de structures de contrôle :
les branchements conditionnels : si ... alors ...

Si ∆= 0
x ←− b

2
Sinon

x ← −b−
√
∆

2 , y ← −b+
√
∆

2

les boucles conditionnelles : tant que ...

Tant que réponse non valide
poser la question

les itérations : pour ... allant de ... à ... , pour ... parmi ...

x =
5

∑
i=1

1
i2

x ← 0
Pour i de 1 à 5

x ← x + 1
i2

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 15 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC
Structures de
contrôle

Expressions
conditionnelles

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Les différentes structures de contrôle

On distingue 3 types de structures de contrôle :
les branchements conditionnels : si ... alors ...

les boucles conditionnelles : tant que ...

les itérations : pour ... allant de ... à ... , pour ... parmi ...

Note : on peut toujours (évidemment !) faire des itérations en
utilisant des boucles :

x ← 0
i ← 1
Tant que i ≤ 5

x ← x + 1
i2

i ← i +1

mais conceptuellement (et syntaxiquement aussi dans certains langages)
il y a une différence.

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 15 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC
Structures de
contrôle

Expressions
conditionnelles

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Les différentes structures de contrôle

On distingue 3 types de structures de contrôle :
les branchements conditionnels : si ... alors ...

les boucles conditionnelles : tant que ...

les itérations : pour ... allant de ... à ... , pour ... parmi ...

Les définitions de ces diverses structures de contrôle reposent sur
les notions de condition et de bloc d’instructions.

Une condition est une expression logique telle que définie au
cours précédent.

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 15 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC
Structures de
contrôle

Expressions
conditionnelles

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Retour à notre premier exemple

Résolution d’une équation du second degré : x2 +b x +c = 0
#include <iostream>
#include <cmath>
using namespace std;
main() {
double b(0.0);
double c(0.0);
double delta(0.0);

cin >> b >> c;
delta = b*b - 4*c;
if (delta < 0.0) {
cout << "pas de solutions reelles" << endl;

} else if (delta == 0.0) {
cout << "une solution unique : " << -b/2.0 << endl;

} else {
cout << "deux solutions : " << (-b-sqrt(delta))/2.0

<< " et " << (-b+sqrt(delta))/2.0 << endl;
}

}

données
traitements
structures de contrôle

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 16 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC
Structures de
contrôle

Expressions
conditionnelles

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Conditions

Pour exprimer des conditions

☞ Opérateurs de comparaison et opérateurs logiques

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 17 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC
Structures de
contrôle

Expressions
conditionnelles

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Opérateurs de comparaison

Les opérateurs de comparaison (relationnels) sont :

== égalité
!= non égalité
< inférieur
> supérieur
<= inférieur ou égal
>= supérieur ou égal

Leur résultat est un booléen (true ou false)
Exemples (expressions logiques avec opérateur de comparaison) :

x >= y
x != (z + 2)
(x + 4) - z == 5
b = (x == 5);

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 18 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC
Structures de
contrôle

Expressions
conditionnelles

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Le type bool

bool est un type (au même titre que char, int ou double)
▶ ne peux prendre que deux valeurs
▶ valeurs littérales : true, false
▶ représente de « valeurs de vérité », des conditions logiques

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 19 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC
Structures de
contrôle

Expressions
conditionnelles

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Opérateurs logiques
On peut combiner des expressions logiques au moyen
d’opérateurs logiques :

&& “et” logique
|| ou
! négation (Remarque : cet opérateur n’a qu’un seul opérande)

Exemples :
▶ Expression logique utilisant des opérateurs logiques :

((z != 0) && (2*(x-y)/z < 3))

▶ Code utilisant des opérateurs logiques :

bool un_test(true);
bool un_autre_test((x >= 0) ||

((x*y > 0) && !unTest));

Note : La norme (ISO/IEC 14882 :1998) définit aussi les formes
alternatives : and, or et not Par exemple ((x >= 0) or
((x*y > 0) and not un_test))

☞ pas toujours supporté par tous les compilateurs :-(
ICC (partie programmation) – Cours 3 : Branchements conditionnels – 20 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC
Structures de
contrôle

Expressions
conditionnelles

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Opérateurs logiques (2)

Les opérateurs logiques &&, || et ! sont définis par les tables de
vérité usuelles :

x y !x x && y x || y x ∧ y

true true false true true false

true false false false true true

false true true false true true

false false true false false false

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 21 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Approfondissements

▶ Du bon usage des booléens
▶ Évaluation paresseuse
▶ Choix multiples

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 22 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Du bon usage des variables booléennes

Une variable booléenne représente une condition

☞ Inutile de la comparer explicitement à true ou false !

Correct :
if (un_test)
if (!un_test)
return un_test;

Non recommandé :

if (un_test == true)
if (un_test != true)
if (un_test == false)
if (un_test != false)

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 23 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Évaluation « paresseuse »

Les opérateurs logiques && et || effectuent une évaluation
« paresseuse » (“lazy evaluation”) de leur arguments :

l’évaluation des arguments se fait de la gauche vers la droite et seuls les
arguments strictement nécessaires à la détermination de la valeur
logique sont évalués.

Ainsi, dans X1 && X2 && ... && Xn, les arguments Xi ne
sont évalués que jusqu’au 1er argument faux (s’il existe, auquel
cas l’expression est fausse, sinon l’expression est vraie) ;

Exemple : dans (i != 0) && (3/i < 25) le second terme ne
sera effectivement évalué uniquement si i est non nul. La division
par i ne sera donc jamais erronée.
Et dans X1 || X2 || ... || Xn, les arguments ne sont évalués
que jusqu’au 1er argument vrai (s’il existe, auquel cas l’expression
est vraie, sinon l’expression est fausse).

Exemple : dans (i == 0) || (3/i < 25) le second terme ne
sera effectivement évalué uniquement si i est non nul.

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 24 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Choix multiples

On peut écrire de façon plus claire l’enchaînement de plusieurs
conditions dans le cas où l’on teste différentes valeurs d’une
expression

Avec if ..else Avec switch

if (i == 1)
Instructions1

else if (i == 12)
Instructions2

else if ...
else

InstructionsN+1

switch (i)
{

case 1:
Instructions1
break;

case 12:
Instructions2
break;

case ...
default:

InstructionsN+1
}

☞ chaque case correspond à une constante int (ou
équivalent) ou char

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 25 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

To break or not to break . . .

Attention Si l’on ne met pas de break, l’exécution ne passe pas
à la fin du switch, mais continue avec les instructions du case
suivant :

switch (a+b) {
case 0: instruction1; // execution uniquement

break; // quand (a+b) vaut 0
case 2:
case 3: instruction2; // quand (a+b) vaut 2 ou 3
case 4:
case 8: instruction3; // quand (a+b) vaut 2, 3, 4

break; // ou 8
default: instruction4; // dans tous les autres cas

}

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 26 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

switch : un exemple

Soit l’enchaînement de conditions suivant :
cout << "Entrez un entier: ";

int a; cin >> a;

if (a == 0)
System.out.println("To break");

else
if (a == 1)

cout << "or not" << endl;
else

if (a == 2)
cout << "to break" << endl;

else
cout << "that is the question" << endl;

Exercice : essayons de l’exprimer au moyen d’un switch . . .

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 27 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Avec break

Code Exécution

cout << "Entrez un entier: ";
int a; cin >> a;

switch (a) {
case 0 :

cout << "To break" << endl;
break;

case 1 :
cout << "or not" << endl;

break;
case 2 :

cout << "to break" << endl;
break;

default :
cout <<

"that is the question" << endl;
}

Entrez un entier: 0
To break

Entrez un entier: 1
or not

Entrez un entier: 99
that is the question

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 28 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Sans break

Code Exécution

cout << "Entrez un entier: ";
int a; cin >> a;

switch (a) {
case 0 :

cout << "To break" << endl;
case 1 :

cout << "or not" << endl;
case 2 :

cout << "to break" << endl;
default :

cout <<
"that is the question" << endl;

}

Entrez un entier: 99
that is the question

Entrez un entier: 2
to break
that is the question

Entrez un entier: 0
To break
or not
to break
that is the question

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 29 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

switch vs if..else

switch est moins général que if..else :

▶ La valeur sur laquell on teste doit être soit char ou int

▶ Les cas doivent être des constantes
(pas de variables)

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 30 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Etude de cas

▶ reprendre l’équation du second degré
☞ cf « exercice 0 »

▶ calculer des valeurs de la fonction

f (x) =

√
20+7x −x2 log

(
1

x+5

)
x
10 −

√
log

(
x3−3x +7

)
− x2

5

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 31 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Etude de cas

Comment calculer l’expression suivante sans produire d’erreur
(i.e. sans « Nan », « Not a number »)?

√
20+7x −x2 log

(
1

x+5

)
x
10 −

√
log

(
x3−3x +7

)
− x2

5

☞ DÉCOMPOSER
Traiter « petit bout par petit bout »

Par exemple :
if (x + 5.0 == 0.0) {
cerr << "Expression invalide pour x=" << x

<< " : division par 0" << endl;
return 1; // On sort avec un code d’erreur

}

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 32 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Etude de cas

Bien sûr, on suppose qu’au préalable x ait été déclaré et ait une
valeur, par exemple saisie au clavier :
double x(0.0);
cout << "Entrez une valeur pour x : ";
cin >> x;

On pourrait alors continuer le code par exemple comme suit :

double x(0.0);
cout << "Entrez une valeur pour x : ";
cin >> x;

if (x + 5.0 == 0.0) {
cerr << "Expression invalide pour x=" << x

<< " : division par 0" << endl;
return 1;

}

if (x + 5.0 < 0.0) {
cerr << "Expression invalide pour x=" << x

<< " : logarithme d’un nombre négatif" << endl;
return 1;

}

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 33 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Etude de cas

Mais ce code présente un gros défaut !
if (x + 5.0 == 0.0) {
cerr << "Expression invalide pour x=" << x

<< " : division par 0" << endl;
return 1;

}

if (x + 5.0 < 0.0) { // x + 5.0 COPIEE-COLLEE !!
cerr << "Expression invalide pour x=" << x

<< " : logarithme d’un nombre négatif" << endl;
return 1;

}

JAMAIS DE « COPIER-COLLER »!

Dans du code, il ne faut jamais avoir deux fois la même chose !

☞ problèmes de maintenance (corrections futures du code)

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 34 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Etude de cas

Solution : introduire une variable auxiliaire,
qui réprésente justement le fait que ce soit la même chose :
double auxiliaire(x + 5.0);
if (auxiliaire == 0.0) {
cerr << "Expression invalide pour x=" << x

<< " : division par 0" << endl;
return 1;

}

if (auxiliaire < 0.0) {
cerr << "Expression invalide pour x=" << x

<< " : logarithme d’un nombre négatif" << endl;
return 1;

}

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 35 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Etude de cas

On peut ensuite continuer dans le même esprit,
en utilisant si nécessaire une seconde variable :
// ...

if (auxiliaire < 0.0) {
cerr << "Expression invalide pour x=" << x

<< " : logarithme d’un nombre négatif" << endl;
return 1;

}

double resultat(log(1.0 / auxiliaire));

auxiliaire = 20.0 + 7.0*x - x*x;
if (auxiliaire <= 0.0) {
cerr << "Expression invalide pour x=" << x

<< " : racine d’un nombre négatif" << endl;
return 1;

}

resultat *= sqrt(auxiliaire);

// etc.

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 36 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Qu’en est-il des problèmes de précision?
Les comparaisons exactes entre double peuvent être erronées en
raison de problèmes de précision.
Ainsi x+0.5 == 0 peut (alors que l’on pense x valoir -5.0) retourner
false au lieu de true si par exemple x est obtenue par calcul !
En pratique, lorsque cela est rendu possible par le domaine
d’application, on fait souvent des comparaisons à un espilon
près :
constexpr PRECISION(1e-8);

if (abs(x + 0.5) <= PRECISION) {
//...

}

Néamoins, il ne s’agit alors plus d’une résolution mathématique du
problème !
Si l’on veut faire des mathématiques avec un ordinateur, il faut soit
admettre que les résultats ne sont pas garantis (ce que vous allez faire
dans les exercices de cette semaine), soit avoir recours à d’autres
procédés plus complexes (arithmétique des intervalles par exemple, mais
c’est tout un domaine !)

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 37 / 38

Compléments
semaine 2

Concepts
centraux

Support MOOC

Approfondissements

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Pour préparer le prochain cours

▶ Vidéos et quiz du MOOC semaine 3 :
▶ Itérations : introduction [12 :37]
▶ Itérations : approfondissement et exemples [19 :17]
▶ Itérations : quiz [09 :04]
▶ Boucles conditionnelles [22 :31]
▶ Blocs d’instructions [12 :18]

▶ Le prochain cours :
▶ résumé et quelques approfondissements

ICC (partie programmation) – Cours 3 : Branchements conditionnels – 38 / 38

	Compléments semaine 2
	Cycle de développement
	auto et constantes

	Concepts centraux
	Support MOOC
	Structures de contrôle
	Expressions conditionnelles

	Approfondissements
	Etude de cas

