Plan

Information, Calcul et Communication

(partie programmation) :
o » Quelques compléments de la semaine 2

» Etude de cas

> Du bon usage des booléens
Jamila Sam » Evaluation paresseuse
> Choix multiples
Laboratoire d’Intelligence Artificielle
Faculté 1&C
©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier
L= P = L L= P L= L o
=iy ICC (partie programmation) — Cours 3 : Branchements conditionnels — 1/38 =iy ICC (partie programmation) — Cours 3 : Branchements conditionnels — 2/38

erees Le langage C++ (1) erenes Le langage C++ (2)
Plus précisément, le langage C++ est un langage orienté-objet
compilé fortement typé :

C++ = C + typage fort + objets

> Extension objet du langage C Parmi les avantages de C++, on peut citer :

» Développé initialement par Bjarn Stroustrup (1983-1985) > Un des langages ?bjets Ies' plus utilisés o

» Normalisé ISO en 1998, 2002 et 2011 > U’n langage compilé, ce qui permet la r?al|sat|on
d’applications efficaces (disponibilité d’excellents
compilateurs open-source (GNU))

» Un typage fort, ce qui permet au compilateur d’effectuer de
nombreuses vérifications lors de la compilation = moins de
« bugs »...

» Un langage disponible sur pratiguement toutes les
plate-formes;

OEPFL 202425 cepr nzezs » Similarité syntaxique et facilité d’interfagcage avec le C
ia\rlrg‘aan—scagc‘ir\c Chappelier &a\rlrt‘a‘aan—cagc‘ir\c Chappelier

Le C date de 1969-1973.

[- P [- L [- P [- L
(=1 ICC (partie programmation) — Cours 3 : Branchements conditionnels — 3/38 (=1 ad ICC (partie programmation) — Cours 3 : Branchements conditionnels — 4 /38

Le langage C++ (3) Cycle de développement (1)

jéveloppement développement

0 et constante) et constante

fichier source >[fichier exécutable

... et les inconvénients :
commande : g++ hello.cc -o hello

» Similarité syntaxique avec le C! «
> Pas nécessairement de gestion automatique de la mémoire hello.cc
» Pas de protection de la mémoire hello®
. .) “ . ” #include <iostream>
» Syntaxe parfois lourde et peu intuitive (“pousse-au-crime”) using namespace std; 010100001010101
» Gestion facultative des exceptions 001010101001110
. ;. . . N . main () |
» Effets parfois indésirables et peu intuitifs dus a la production LOT111001010001
automatique de code cout << "Hello World!" << endl;
}
©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier
EPFL ICC (partie programmation) — Cours 3 : Branchements conditionnels — 5/ 38 EPFL ICC (partie programmation) — Cours 3 : Branchements conditionnels — 6 /38
Cycle de développement (2) Donneées et traitements
Séy\(/::ot:);ement géy\(/::ot;:)ement
Programmer c'est : Un programme C++ est donc a la base un ensemble de
@ réfléchir au probléme; concevoir I'algorithme traitements s’effectuant sur des données.
@ traduire cette réflexion en un texte exprimé dans un langage _ _
donné (écriture du programme source) Algorithme structures de données
. . Traitements Données
® traduire ce texte sous un format exécutable par un processeur Varah
(compilation, c++ ou g++) .) araples
o Expressions & Opérateurs
@ execution du programme Structures de controle
Fonctions Portée
En pratique : Chaines de caracteres
> d ilati | écri Tableaux statiques
erreurs de compilation (mal écrit) Tableaux dynamiques
> erreurs d’exécution (mal pensé) Structures
Pointeurs
— correction(s) rz d’ou le(s) cycle(s)! Entrées/Sorties
©EPFL 2024-25 (©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier
EPFL ICC (partie programmation) — Cours 3 : Branchements conditionnels — 7 /38 EPFL ICC (partie programmation) — Cours 3 : Branchements conditionnels — 8/ 38

jéveloppement
auto et constantes

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

développement
auto et constantes

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

@ e auto

En Q“'ﬂ, on peut laisser le compilateur deviner le type d’'une
variable grace au mot-clé auto.

Le type de la variable est déduit du contexte. Il faut donc qu'il y ait
un contexte, c’est-a-dire une initialisation.

Par exemple :
auto val (2);
auto j(2%1+5);
auto x(7.2835);

Conseil : N'abuser pas de cette possibilité et explicitez vos types
autant que possibles.

N’utilisez aut o que dans les cas « techniques », par exemple (qui
viendra plus tard dans le cours) :

for (auto p = v.begin(); p != v.end(); ++p)
au lieu de
for (vector<int>::iterator

p = v.begin(); p != v.end(); ++p)

ICC (partie programmation) — Cours 3 : Branchements conditionnels — 9/38

€D o Expressions constantes

En C++11, il existe aussi le mot clé constexpr.

Il est d’utilisation plus générale, mais est aussi plus contraignant
que const : la valeur initiale doit pouvoir étre calculée a la
compilation.

s Les deux (const et constexpr) sont donc tres différents !

> const indique au compilateur qu'une donnée ne changera pas
de valeur au travers de ce nom; mais

1. le compilateur peut trés bien ne pas connaitre la valeur en
question au moment de la compilation; et
2. cette valeur pourrait changer par ailleurs.

> constexpr indique au compilateur qu'une donnée ne
changera pas du tout de valeur et qu’il doit pouvoir en calculer
la valeur au moment de la compilation (i.e. cette valeur ne dépend
pas de ce qu’il va se passer plus tard dans le programme).

Conseil : Si ces deux conditions sont vérifiées, on préférera
utiliser constexpr.

ICC (partie programmation) — Cours 3 : Branchements conditionnels — 11/38

jéveloppement
auto et constantes

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Support MOOC
: os d

Expressions
conditionnelles

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Données modifiables/non modifiables

Par défaut, les variables en C++ sont modifiables.

Si I'on ne souhaite pas modifier une « variable » aprés son
initialisation : la définir comme constante (pour ce nom la
uniquement)

La nature modifiable ou non modifiable d’'une donnée au travers
de ce nom peut étre définie lors de la déclaration par 'indication
du mot réservé const.

Elle ne pourra plus étre modifiée par le programme en utilisant ce
nom (toute tentative de modification via ce nom produira un
message d’erreur lors de la compilation).

Exemples :

int const couple(2);
double const g(9.81);

ICC (partie programmation) — Cours 3 : Branchements conditionnels — 10/38

Vidéos, transparents et quiz

wWww.coursera.org/learn/initiation-programmation-cpp/

w Semaine 2

ICC (partie programmation) — Cours 3 : Branchements conditionnels — 12/38

https://www.coursera.org/learn/initiation-programmation-cpp/

J’écris a mes amis Structures de controle

Support MOOG C++ (comme la plupart des langages de programmation) permet
Sietures o // Programme ami.cc Stuctures de la représentation d’enchainements plus complexes grace aux
Lpelude lostrean Expessions structures de controle

conditionnelles using namespace std; conditionnelles
int main()

{

string noms A quoi ¢a sert?)) B o
string adresse; Une structure de contrble sert a modifier I'ordre linéaire
d’exécution d’'un programme.

// Lecture des donnee

cout << "Donnez le nom de votre ami : " ;
cin >> nom; = faire exécuter a la machine des taches de fagon répétitive, ou
cout << "Donnez 1’adresse de votre ami : " ; en fonction de certaines conditions (ou les deux).

cin >> adresse;
// Impression de 1l’etiquette
cout << nom << endl;

cout << adresse << endl;

}

= EXécution linéaire

©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier
EPFL ICC (partie programmation) — Cours 3 : Branchements conditionnels — 13/38 EPFL ICC (partie programmation) — Cours 3 : Branchements conditionnels — 14 /38
Les differentes structures de controle Les difféerentes structures de controle
On distingue 3 types de structures de contrble : On distingue 3 types de structures de contrble :
Structures de oy . Structures de oy .
contdle les branchements conditionnels : si ... alors ... contdle les branchements conditionnels : si ... alors ...
Expressions Expressions
conditionnelles conditionnelles
SiA=0) les boucles conditionnelles : tant que ...
X+ —3
2 N . .
Sinon les itérations : pour ... allantde ... a ... , pour ... parmi ...
X 7b72\/5’ y e —bJE\/E

Note : on peut toujours (évidemment!) faire des itérations en

les boucles conditionnelles : tant que ... utilisant des boucles :
Tant que réponse non valide ;(:10
oser la question)
P 9 Tantque /i <5
1
N . . X=X+ %
les itérations : pour ... allantde ... a ... , pour ... parmi ... P it 7
5 x<0 : . . .
1 Pour ide 1 45 mais conceptuellement (et syntaxiquement aussi dans certains langages)
= — i . iee s
X Z 2 ; il y a une différence.
©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier

[- P [- L [- P [- L
(=1 ICC (partie programmation) — Cours 3 : Branchements conditionnels — 15/38 (=1 ad ICC (partie programmation) — Cours 3 : Branchements conditionnels — 15/38

Les différentes structures de contréle Retour a notre premier exemple

On distingue 3 types de structures de contrble : Résolution d’une équation du second degré : x* + b x +¢c =0
Structures de g . Structures de . .
contole les branchements conditionnels : si ... alors ... contéle #include <iostream>
condonneles Exprossions #include <cmath>
les boucles conditionnelles : fant que ... using namespace std;
main () {
les itérations : pour ... allantde ... a ..., pour ... parmi ... double 1(0.0);
double c(0.0);
double delta(0.0);
Les définitions de ces diverses structures de contrdle reposent sur SRR e
les notions de condition et de bloc d'instructions. if (delta < 0.0) {
cout << "pas de solutions reelles" << endl;
Une condition est une expression logique telle que définie au } else if (delta == 0.0) { o .
sz cout << "une solution unique : " << - . << endl;
cours précédent. | else
cout << "deux solutions : " << (-b-sqrt(delta)) /2.0
<< " et " << (-btsgrt(delta)) /2.0 << endl;
}
}
©EPFL 2024-25 ©EPFL 2024-25 données
‘iajne”;—sca;ric Chappelier ia.;r(‘e‘;—scagiric Chappelier traitements
structures de contréle
EPFL ICC (partie programmation) — Cours 3 : Branchements conditionnels — 15/38 EPFL ICC (partie programmation) — Cours 3 : Branchements conditionnels — 16 /38
Conditions Opeérateurs de comparaison
§ Les opérateurs de comparaison (relationnels) sont :
Expressions Expressions
conditionnelles conditionnelles —
Pour exprimer des conditions == égalité
. . . . I = 4 ité
& Opérateurs de comparaison et opérateurs logiques != non égalité
< inférieur
> supérieur
<= inférieur ou égal
>= supérieur ou égal
Leur résultat est un booléen (true ou false)
Exemples (expressions logiques avec opérateur de comparaison) :
X >=Yy
x = (z + 2)
(x + 4) — z == 5
b = (X == 5) ;
©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier
EPFL ICC (partie programmation) — Cours 3 : Branchements conditionnels — 17 /38 EPFL

ICC (partie programmation) — Cours 3 : Branchements conditionnels — 18/38

Le type bool

Structures de
controle

Expressions
conditionnelles

bool estun type (au méme titre que char, int ou double)
> ne peux prendre que deux valeurs
» valeurs littérales : t rue, false

> représente de « valeurs de vérité », des conditions logiques

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

ICC (partie programmation) — Cours 3 : Branchements conditionnels — 19/38

Opérateurs logiques (2)

Structr Les opérateurs logiques «, | | et ! sont définis par les tables de
Exgressons vérité usuelles :

conditionnelles

b4 y I'x X & v | x|l v]x Ay
true true false true true false
true false false false true true
false true true false true true
false false true false false false

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

ICC (partie programmation) — Cours 3 : Branchements conditionnels — 21/38

Opérateurs logiques

On peut combiner des expressions logiques au moyen
d’opérateurs logiques :

Expressions

conditionnelles & & “et” |og|que
[ou
! négation (Remarque : cet opérateur n’a qu’un seul opérande)
Exemples :
» Expression logique utilisant des opérateurs logiques :
((z = 0) && (2%x(x-y)/z < 3))

» Code utilisant des opérateurs logiques :
bool un_test (true);
bool un_autre_test ((x >= 0) ||

((xxy > 0) && !'unTest));
Note : La norme (ISO/IEC 14882 :1998) définit aussi les formes
alternatives : and, or et not Par exemple ((x >= 0) or
OEPFL 2024-25 ((xxy > 0) and not un_test))
B pas toujours supporté par tous les compilateurs :-(
ICC (partie programmation) — Cours 3 : Branchements conditionnels — 20 /38

c=PrL

Approfondissements

Approfondissements

» Du bon usage des booléens
» Evaluation paresseuse
» Choix multiples

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

ICC (partie programmation) — Cours 3 : Branchements conditionnels — 22/38

Du bon usage des variables booléennes

Une variable booléenne représente une condition

Approfondissements

= Inutile de la comparer explicitement a true ou false!

if (un_test)
Correct : if (lun_test)
return un_test;

if (un_test == true)
. if (un_test != true)
Non recommandeé : .
if (un_test == false)
if (un_test != false)

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

ICC (partie programmation) — Cours 3 : Branchements conditionnels — 23 /38

Choix multiples

On peut écrire de fagon plus claire I'enchainement de plusieurs
approlondissements - CONAitions dans le cas ou I'on teste différentes valeurs d’une

expression

Avec if ..else Avec switch

if (1 == 1) switch (1)
Instructionsl {
else if (i == 12) case 1:
Instructions? Instructionsl
else if ... break;
else case 12:
InstructionsN+1 Instructions2
break;
case
default:
InstructionsN+1

}

= chaque case correspond a une constante int (ou
©EPFL 2024-25 équivalent) OuU char

Jamila Sam
& Jean-Cédric Chappelier

c=PrL

ICC (partie programmation) — Cours 3 : Branchements conditionnels — 25/38

Evaluation « paresseuse »

)

Les opérateurs logiques s et | | effectuent une évaluation
Approfondissements ¢« paresseuse » (“lazy evaluation”) de leur arguments :

I'évaluation des arguments se fait de la gauche vers la droite et seuls les
arguments strictement nécessaires a la détermination de la valeur
logique sont évalués.

Ainsi, dans X1 && X2 && && Xn, les arguments xi ne
sont évalués que jusqu’au 1er argument faux (s'il existe, auquel
cas I'expression est fausse, sinon I'expression est vraie) ;

Exemple:dans (i != 0) && (3/i < 25) le secondterme ne
sera effectivement évalué uniquement si i est non nul. La division
par i ne sera donc jamais erronée.

Etdans x1 || x2 || ... || Xn,les arguments ne sont évalués
que jusqu’au 1er argument vrai (s'il existe, auquel cas I'expression
est vraie, sinon I'expression est fausse).

©EPFL 202425 Exemple:dans (i == 0) || (3/i < 25) le secondterme ne
Jamila Sam . 7 7 . .

zueancericcraeier - SEFA €ffectivement évalué uniquement si i est non nul.

':P':L

[=]]

ICC (partie programmation) — Cours 3 : Branchements conditionnels — 24 /38

To break or not to break ...

Attention SiI'on ne met pas de break, I'exécution ne passe pas
approondissements @ 1@ fin du switch, mais continue avec les instructions du case
suivant :

switch (a+b) {
case 0: instructionl; // execution uniquement

break; // quand (a+b) vaut 0
case 2:
case 3: instruction2; // quand (a+b) vaut 2 ou 3
case 4:
case 8: instruction3; // quand (a+b) vaut 2, 3, 4
break; // ou 8

default: instructiond; // dans tous les autres cas

©EPFL 2024-25

Jamila Sam

& Jean-Cédric Chappelier
cpre-
cPFL

ICC (partie programmation) — Cours 3 : Branchements conditionnels — 26 /38

switch : un exemple Avec break

Approfondissements COde EXéCUtion

approfondissements — St 'enchainement de conditions suivant :

cout << "Entrez un entier: "; cout << "Entrez un entier: ";

: . Entrez un entier: O
int a; cin >> a;

int a; cin >> a; To break

switch
v (a) { Entrez un entier: 1

if (a == 0) case 0
System.out.println("To break"); cout << "To break" << endl; or not
else break;)
if (a == 1) case 1 Entre% un entler:'99
cout << "or not" << endl; cout << "or not" << endl; that is the question
else break;
if (a == 2) case 2
cout << "to break" << endl; cout << "to break" << endl;
else break;
cout << "that is the question" << endl; default
cout <<
"that is the question" << endl;
Exercice : essayons de I'exprimer au moyen d’un switch ... }
©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier
E PF L ICC (partie programmation) — Cours 3 : Branchements conditionnels — 27 /38 E PF L ICC (partie programmation) — Cours 3 : Branchements conditionnels — 28 /38

Sans break switch Vs if. .else

Approfondissements Approfondissements
Code Exécution
cout << "Entrez un entier: ";

. . Entrez un entier: 99
int a; cin >> a;

that is the question switch est moins général que if. .else:

switch (a
(a) { Entrez un entier: 2

case 0 :
cout << "To break" << endl; to break _ > La valeur sur laquell on teste doit étre soit char ou int
that is the question
case 1
cout << "or not" << endl; . ; N
case 2 Entrez un entier: 0 » Les cas doivent étre des constantes
cout << "to break" << endl; To break (pas de variables)
or not
default
to break

cout <<

"that is the question" << endl; that is the question

©EPFL 2024-25 ©EPFL 2024-25

Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier

[- P [- L [- P [- L
(=1 ICC (partie programmation) — Cours 3 : Branchements conditionnels — 29 /38 (=1 ad ICC (partie programmation) — Cours 3 : Branchements conditionnels — 30/38

Etude de cas Etude de cas

Comment calculer I'expression suivante sans produire d’erreur
Fludede cas Flude de cas (i.e. sans « Nan », « Not a number »)?

» reprendre I'équation du second degré

V20T 7x — X2 log (1.
w Cf « exercice 0 » 20+7x—x°log | 515

35— log (x3—3x+7) — £
» calculer des valeurs de la fonction
V@GI?ijébg(ﬁz) = DECOMPOSER
f(x)=

Traiter « petit bout par petit bout »
%—\/Iog(X?’—SX—i—?) —%2

Par exemple :
if (x + 5.0 == 0.0) {
cerr << "Expression invalide pour x=" << x
<< " : division par 0" << endl;

return 1; // On sort avec un code d’erreur

}

©EPFL 2024-25 ©EPFL 2024-25

Jamila Sam Jamila Sam

& Jean-Cédric Chappelier & Jean-Cédric Chappelier
cprs
cPrFL

cps
ICC (partie programmation) — Cours 3 : Branchements conditionnels — 31/38 = P' L ICC (partie programmation) — Cours 3 : Branchements conditionnels — 32/38

Etude de cas Etude de cas

Bien sdr, on suppose qu’au préalable x ait été déclaré et ait une

Etude de cas valeur, par exemple saisie au clavier : Etude de cas Mais ce code présente un gros défaut !
double x(0.0); if (x + 5.0 == 0.0) {
CQUt << "'Entrez une valeur pour x : "j cerr << "Expression invalide pour x=" << x
cin >> x; . .) << " : division par 0" << endl;
On pourrait alors continuer le code par exemple comme suit : return 1;

}
double x(0.0);

if (x + 5.0 < 0.0) { // x + 5.0 COPIEE-COLLEE !!
cout << "Entrez une valeur pour x : "; cerr << "Expression invalide pour x=" << x
cin >> x; << " : logarithme d’un nombre négatif" << endl;
return 1;
if (x + 5.0 == 0.0) { }
cerr << "Expression invalide pour x=" << x
" . 3 1 1 " .
Sy, | rvReem pen Of s endl JAMAIS DE « COPIER-COLLER »!
return 1;
} . - - . . n
Dans du code, il ne faut jamais avoir deux fois la méme chose !
if (x + 5.0 < 0.0) {
cerr << "Expression invalide pour x=" << x

== problémes de maintenance (corrections futures du code)

<< " : logarithme d’un nombre négatif" << endl;
return 1;

}
©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier

& Jean-Cédric Chappelier
cpre-
cPFL

cpr-
ICC (partie programmation) — Cours 3 : Branchements conditionnels — 33 /38 = Pi' L ICC (partie programmation) — Cours 3 : Branchements conditionnels — 34 /38

Etude de cas

Etude de cas
Solution : introduire une variable auxiliaire,
qui réprésente justement le fait que ce soit la méme chose :

double auxiliaire(x + 5.0);

if (auxiliaire == 0.0) {
cerr << "Expression invalide pour x=" << x
<< " : division par 0" << endl;

return 1;

}

if (auxiliaire < 0.0) {
cerr << "Expression invalide pour x=" << x
<< " : logarithme d’un nombre négatif" << endl;
return 1;

}

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

':FDE“_
=i ICC (partie programmation) — Cours 3 : Branchements conditionnels — 35/38

Qu’en est-il des problemes de précision ?

Les comparaisons exactes entre double peuvent étre erronées en
raison de problémes de précision.

Eiude do cas Ainsi x+0.5 == 0 peut (alors que I'on pense x valoir -5.0) retourner
false au lieu de true si par exemple x est obtenue par calcul!

En pratique, lorsque cela est rendu possible par le domaine
d’application, on fait souvent des comparaisons a un espilon
pres :

constexpr PRECISION (le-8);

if (abs(x + 0.5) <= PRECISION) {
/e
}
Néamoins, il ne s’agit alors plus d’une résolution mathématique du
probléme !
Si I'on veut faire des mathématiques avec un ordinateur, il faut soit
admettre que les résultats ne sont pas garantis (ce que vous allez faire
dans les exercices de cette semaine), soit avoir recours a d’autres
OEPFL 202425 procédés plus complexes (arithmétique des intervalles par exemple, mais
& Jean-Cédric Chappelier Clest tout un domalne ')
r-Fgr-L-)) -
= ICC (partie programmation) — Cours 3 : Branchements conditionnels — 37 /38

Etude de cas

On peut ensuite continuer dans le méme esprit,
Etude de cas en utilisant si nécessaire une seconde variable :
Y72

if (auxiliaire < 0.0) {
cerr << "Expression invalide pour x=" << x
<< " : logarithme d’un nombre négatif" << endl;

}

return 1;

double resultat (log(l.0 / auxiliaire));

auxiliaire = 20.0 + 7.0%xx — x*Xx;
if (auxiliaire <= 0.0) {
cerr << "Expression invalide pour x=" << x
<< " : racine d’un nombre négatif" << endl;

}

resultat x= sqrt(auxiliaire);

return 1;

// etc.

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

ICC (partie programmation) — Cours 3 : Branchements conditionnels — 36 /38

Pour préparer le prochain cours

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

» Vidéos et quiz du MOOC semaine 3 :

> [térations : introduction [12 :37]
[térations : approfondissement et exemples [19 :17]

Boucles conditionnelles [22 :31]

>
> Itérations : quiz [09 :04]
>
>

Blocs d’instructions [12 :18]

» Le prochain cours :

> résumé et quelques approfondissements

ICC (partie programmation) — Cours 3 : Branchements conditionnels — 38/38

	Compléments semaine 2
	Cycle de développement
	auto et constantes

	Concepts centraux
	Support MOOC
	Structures de contrôle
	Expressions conditionnelles

	Approfondissements
	Etude de cas

