
ICC Theory

1

Information, Computation, and
Communication

Training

ICC Theory

2

Complexity Example Behavior Example Algorithm

Θ(log n) Look at only log n elements of the input.
Split the input into at least half (or more)

Binary search (Recherche dichotomique)

Θ(n) Look at each input element once Linear search

Θ(n・log n) Split input into half (which can be done at
most log n times)
At each split look at each element once

Merge sort (tri fusion)

Θ(n2) Look at each pair of elements (i,j) Insertion sort

Θ(n3) Look at each triple of element (i,j,k) Floyd’s shortest path algorithm

Θ(2n) Look at all subset of a list or
all permutation of a list or
all paths in a graph

Create a list of all binary numbers of
length n, e.g., input: 3
output:{{0,0,0},{0,0,1},{0,1,0},{0,1,1},

{1,0,0},{1,0,1},{1,1,0},{1,1,1}}

Representative Algorithms

In this table “look at element x” means to do a constant number instructions for element x,
e.g., compare x with 3, add x to another variable,…

ICC Theory

3

§ What happens if you execute this algorithm with
a = 32 and b = 48 and r =15?

Exercise: Execution

gcd
input : a,b,r integers strictly greater than 0
output : x

repeat
r ← a mod b //rest of the division a/b
a ← b
b ← r

as long as r > 0
return: a

Iter. a b r

Init 32 48 15

1 48 32 32

2 32 16 16

3 16 0 0

Complexity: logarithmic in the value of the inputs (i.e., linear in the number of bits)
See https://en.wikipedia.org/wiki/Euclidean_algorithm#Algorithmic_efficiency
(You are not expected to compute the complexity of this algorithm yourself.)

https://en.wikipedia.org/wiki/Euclidean_algorithm

ICC Theory

4

§ What happens if you execute this algorithm with
L={1,2,3,4,5} and n = 5

Exercise: Execution

algorithm
input : list L of size n
output : x
x ← 0
for i from 1 to n

x ← 10 ・x + L[i]
return: x

Iteration x

Init 0

1 1

2 10 + 2 = 12

3 120 + 3 = 123

4 1230 + 4 = 1234

5 12340 + 5 = 12345

Complexity: Θ(n) because we have n iteration of the loop.

ICC Theory

5

§ For each of the algorithms on the subsequent
slides, answer the following four questions:
1. What happens if you execute it with the input 6?
2. Is this a recursive algorithm?
3. What does it do in general?
4. What is its asymptotic complexity?

Exercise

ICC Theory

6

1. k = 1 + 3 + 5 + 7 + 9 + 11 =36
2. Non recursive
3. Adding the odd numbers from

1 to 2n-1 (which is equal to n2)
4. Complexity:

• Instructions before the loop starts
(Line 1-3): 3

• Max. number of instructions per loop
iteration (Line 4-6) = 4;

• Number of loop iterations = 2n-1;
• Total = 3 + 4 * (2n-1) = 8n - 1 = Θ(n)

linear

Algo1

algo1
input : an integer n
output : an integer

if n equals 0
return: 0

k ← 0
for j from 1 to 2n-1

if (j is odd)
k ← k + j

return: k

Line n k j

Line 0 6 ? ?

Line 3 6 0 ?

Line 4 6 0 1

Line 6 6 0+1=1 1

Line 4 6 1 1+1=2

Line 4 6 1 2+1=3

Line 6 6 1+3=4 3

…

1
2
3
4
5
6
7

1. What happens if you execute it with the input 6?
2. Is this a recursive algorithm?
3. What does it do in general?
4. What is its asymptotic complexity?

ICC Theory

7

1. 62 = 36
2. Non recursive
3. Computes the square
4. Complexity: Θ(1) constant

Algo2

Line n

Line 0 6

Line 1 36

algo2
input : an integer n
output : an integer

return: n2

1. What happens if you execute it with the input 6?
2. Is this a recursive algorithm?
3. What does it do in general?
4. What is its asymptotic complexity?

ICC Theory

8

1. 0 + 1 + 3 + 5 + 7 + 9 + 11 =36
2. Recursive
3. Adding the odd numbers from 1 to 2n-1

(which is equal to n2)
4. Complexity:

• Max. number of instructions in addition to
recursive call = 3

• Height of the recursive stack n+1
• Total = 3 * (n+1) = Θ(n) linear

Algo3
algo3
input : an integer n
output : an integer

if n equals 0
return: 0

return: 2n-1 + algo3(n-1)

algo3(6)

algo3(5)

algo3(4)

algo3(3)

algo3(2)

algo3(1)

algo3(0) 0

2-1 + 0 =1

4-1 + 1 = 4

6-1 + 4 = 9

8-1 + 9 = 16

10-1 + 16 = 25

12-1 + 25 = 36

Additional steps
per level

3 (+,-,assign)

3

3

3

3

3

2

Height = n
#calls = n +1

ICC Theory

9

1. 0 + 2 + 4 + 6 = 12
2. Recursive
3. If n is even, it adds the even numbers from 0

to n. If n is odd, it adds the odd numbers from
0 to n.

4. Complexity:
• Max. number of instructions in addition to

recursive call = 3
• Height of the recursive stack n/2 + 1
• Total = 3 * ((n-1)/2 + 1) = Θ(n) linear

Algo4

algo3(6)

algo3(4)

algo3(2)

algo3(0) 0

2 + 0 = 2

4 + 2 = 6

6 + 6 = 12

Additional steps
per level

3(2 comp., +)

3

3

2

Height=k
#calls = k+1

algo4
input : an integer n
output : an integer

if n equals 0
return: 0

if n equals 1
return: 1

return: n + algo4(n-2)

𝑛 − 2𝑘 ≤ 1
𝑛 − 1 ≤ 2𝑘

𝑘 ≥
𝑛 − 1
2

#calls = 𝑘 + 1

ICC Theory

10

Consider the following algorithm
1. What happens if you execute it with input 4?
2. What does it compute?
3. Determine its order of complexity

Exercise: Algo5

algo5
input : an integer n ≥ 1
output : an integer

k ← 0
for i from 1 to n

s ← 0
for j from 1 to n

s ← s + 1
k ← k + s

return: k

ICC Theory

11

Consider the following algorithm
1. What happens if you execute it with input 4?
2. What does it compute?
3. Determine its order of complexity

Exercise: Algo5

algo5
input : an integer n ≥ 1
output : an integer

k ← 0
for i from 1 to n

s ← 0
for j from 1 to n

s ← s + 1
k ← k + s

return: k

Line k i s j

Line 0 ? ? ? ?

Line 1 0 ? ? ?

Line 2 0 1 ? ?

Line 3 0 1 0 ?

Line 4 0 1 0 1

Line 5 0 1 1 1

….

Line 6 4 1 4

1
2
3
4
5
6
7

ICC Theory

12

Consider the following algorithm
1. What happens if you execute it with input 4?
2. What does it compute?
3. Determine its order of complexity

Exercise: Algo5

algo5
input : an integer n ≥ 1
output : an integer

k ← 0
for i from 1 to n

s ← 0
for j from 1 to n

s ← s + 1
k ← k + s

return: k

1.(1+1+1+1)+(1+1+1+1)+(1+1+1+1)+(1+1+1+1) = 16
2.It computes n2

3.Complexity:
• Max. number of instructions in inner loop (over j): ca. 4
• Max. number of iterations of the inner loop: n
• Max. number of steps in the outer loop (over i): 5 + 4*n (inner

loop)
• Max. number of iterations of the outer loop (over i) = n
• Total = n * (5 + 4n) = 5n + 4n2 = Θ(n2) quadratic

ICC Theory

13

Consider the following algorithm
1. What happens if you execute it with input 4?
2. What does it compute?
3. Determine its order of complexity

Exercise: Algo6

algo6
input : an integer n ≥ 1
output : an integer

k ← 0
for i from 1 to n

s ← 0
for j from i to n

s ← s + 1
k ← k + s

return: k

3. Complexity:
• Instructions in the inner loop (line 4-5): ca. 3 (constant)
• Iterations of the inner loop: (n-i)
• Instructions in the outer loop without the inner loop: 5 (const)
• Instructions of the algorithm = sum of instructions over all

iterations of the outer loop (line 2-6) =

1
2
3
4
5
6
7

1. (1+1+1+1)+(1+1+1)+(1+1)+(1) = 10
2. It computes sum of number up to n

∑!"#$ (𝑛 − 𝑖) = ∑!"#$ 𝑛 − ∑!"#$ 𝑖 = 𝑛2− $% $&#
'

= $!

'
− $

'
= Θ(𝑛2)

ICC Theory

14

Consider the following algorithm
1. What happens if you execute it with input 4?
2. Determine its order of complexity.

Exercise: Algo7

algo7
input : an integer n
output : an integer

if n equals 0
return: 0

s ← 0
k ← 1
while k ≤ n

s ← s + k
k ← 2 * k

return: s + algo7(n-1)

algo7(4)
s =0+1+2+4=7

algo7(3)
s=0+1+2

algo7(2)
s=0+1+2

algo7(1)
s=0+1 1+0=1

3+1=4

3+4=7

7+7=14

Steps per level

log(n)

He
ig

ht
 =

 n

algo7(0) 0

log(n)

log(n)

log(n)

log(n)

Iterations of the while loop:
2𝑖 > 𝑛
𝑖 > log 𝑛

Answer: Θ(n log n)

ICC Theory

15

§ Consider a computer that needs 1s to execute any
instructions. How much time does it take to
execute one of the following algorithm on an input
of the size n=1’000’000?
• Algorithm A with complexity O(1)
• Algorithm B with complexity O(n)
• Algorithm C with complexity O(n2)
• Algorithm D with complexity O(log2(n))

Complexity

1 day ≈ 8.5・104s
1 week ≈ 6・105s
1 year ≈ 3・107s

210 ≈ 1’000 (kilo)
220 ≈ 1’000’000 (mega)
230 ≈ 1’000’000’000 (giga)

ICC Theory

16

§ Consider a computer that needs 1s to execute any
instructions. How much time does it take to
execute one of the following algorithm on an input
of the size n=1’000’000?
• Algorithm A with complexity O(1) : 1s
• Algorithm B with complexity O(n) : 106s ≈ 1.65 weeks
• Algorithm C with complexity O(n2): 1012s ≈ 33’000 years
• Algorithm D with complexity O(log2(n)): 20s

Complexity

1 day ≈ 8.5・104s
1 week ≈ 6・105s
1 year ≈ 3・107s

210 ≈ 1’000 (kilo)
220 ≈ 1’000’000 (mega)
230 ≈ 1’000’000’000 (giga)

ICC Theory

17

§ Given a list L of numbers of size n, and an
integer p, check if the product of any two
numbers in L is equal to p.

Write an Algorithm: Product

ICC Theory

18

Product

checkProduct
input : a list L, its size n, and an integer p
output : true/false

for i from 1 to n
for j from 1 to n

if (L[i]*L[j] = p)
return true

return false

Complexity: Θ(n2) because we have n iterations of
the loop over i, and for every iteration of i, we do n
iterations of the loop over j.

ICC Theory

19

§ Given a matrix M of size n x n, compute the sum
of the elements below the diagonal.

Write an Algorithm: Sum of matrix elements

3 4 0 5

1 1 3 9

2 3 7 0

4 1 1 3

Sum = 12

ICC Theory

20

§ Given a matrix M of size n x n, compute the sum
of the elements below the diagonal.

Write an Algorithm: Sum of matrix elements

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

From row 2 to n.
From col 1 to row-1

Indices
(row, column)

ICC Theory

21

Sum of Matrix elements (n x n)

matrixSum
input : a table M of n x n
output : sum of elements below the diagonal

s ← 0
for row from 2 to n

for col from 1 to row-1
s ← s + M[row][col]

return s

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

From row 2 to n.
From col 1 to row-1

Complexity: Θ(n2) because we iterate over n-2 rows, and for every row r, we go
over r-1 columns. ∑("'$ 𝑟 − 1 = ∑)"#$*# 𝑠 = ($*#)%$

'
= $!

'
− $

'
= Θ(𝑛2)

ICC Theory

22

§ Does this algorithm also work for a Matrix of size
n x m, where n ≠ m?

Sum of Matrix elements (n x m)

matrixSum
input : a table M of n x n
output : sum of elements below the diagonal

s ← 0
for row from 2 to n

for col from 1 to row-1
s ← s + M[row][col]

return s

ICC Theory

23

§ Does this algorithm also work for a Matrix of size
n x m, where n ≠ m?

Sum of Matrix elements (n x m)

matrixSum
input : a table M of n x n
output : sum of elements below the diagonal

s ← 0
for row from 2 to n

for col from 1 to row-1
s ← s + M[row][col]

return s

Element 6,5 is missing!

ICC Theory

24

§ Does this algorithm also work for a Matrix of size
n x m, where n ≠ m?

Sum of Matrix elements (n x m)

matrixSum
input : a table M of n x n
output : sum of elements below the diagonal

s ← 0
for row from 2 to n

for col from 1 to row-1 min(row-1,m)
s ← s + M[row][col]

return s

Element 6,5 is missing!

ICC Theory

25

§ Given a list of cities named 1,2,3,..,n and a table
T of size n x n that stores the direct train
connections between these cities, i.e.,
if T(i,j) is 1, then there is a direct train going from
city i to city j, if T(i,j) is 0, then there is no direct
train from i to j.

§ Given an algorithm that returns yes, if there is a
city that does not have any train connection?
(Note that we need to check that there is no train
from and to this city.)

Write an Algorithm: Trains

ICC Theory

26

hasConn ← list with n entries.
for i from 1 to n
 hasConn[i] ← 0
for i from 1 to n
 for j from 1 to n
 if (T[i][j] = 1)
 hasConn[i] ← 1;
 hasConn[j] ← 1;
for i from 1 to n
 if (hasConn[i] == 0)
 return true
return false

Trains
allCityHaveATrainConnection
input : a Table T of size n x n
output : true or false

Initialize all elements in hasConn to 0
The number of instruction in this loop is proportional to n.

Go through all the connections (i,j) in the table and
mark that city i and city j have a connection
The number of instructions in this loop is proportional to n2.

Check is there is one city without a connection. If yes,
then return true.
The number of instruction in this loop is proportional to n.

Complexity: n + n2 + n = Θ(n2)

ICC Theory

27

Other algorithms you can write:
• Find a city with no outgoing train connections
• Find a city with no incoming train connections
• Find a city with the same number incoming as

outgoing connections

Trains

ICC Theory

28

Questions ?

