ICC Theory

Information, Computation, and
Communication

Training

ICC Theory

Representative Algorithms

Complexity | Example Behavior Example Algorithm

O(log n) Look at only log n elements of the input. Binary search (Recherche dichotomique)
Split the input into at least half (or more)

O(n) Look at each input element once Linear search

O(n = logn) Splitinput into half (which can be done at Merge sort (tri fusion)
most log n times)
At each split look at each element once

O(n?) Look at each pair of elements (i,j) Insertion sort

O(n3) Look at each triple of element (i,j,k) Floyd’s shortest path algorithm

©(2") Look at all subset of a list or Create a list of all binary numbers of
all permutation of a list or length n, e.g., input: 3
all paths in a graph output:{{0,0,0},{0,0,1},{0,1,0},{0,1,1},

{1,0,0},{1,0,1},{1,1,0},{1,1,1}}

In this table “look at element x” means to do a constant number instructions for element x,
e.g., compare x with 3, add x to another variable,...)

ICC Theory

Exercise: Execution

= What happens if you execute this algorithm with
a=32and b =48 andr =157

e ElENEREN
input : a,b,r integers strictly greater than 0
output : x Init 32 48 15
repeat
r < a mod b //rest of the division a/b 1 48 32 32
a<b 2 32 16 16
b<r
aslongasr>0 3 16 0 0
return: a

Complexity: logarithmic in the value of the inputs (i.e., linear in the number of bits)
See https://en.wikipedia.org/wiki/Euclidean algorithm#Algorithmic efficiency
(You are not expected to compute the complexity of this algorithm yourself.)

https://en.wikipedia.org/wiki/Euclidean_algorithm

ICC Theory

Exercise: Execution
= What happens if you execute this algorithm with

L={1,2,3,4,5}and n =5

algorithm

input : list L of size n
output : x

x<0
for i from 1ton
x <10 - x+L[i]
return: x

Init 0
1 1
2 10+2=12
3 120+ 3 =123
4 1230 +4 =1234
5 12340 +5=12345

Complexity: ©(n) because we have n iteration of the loop.

ICC Theory

Exercise

* For each of the algorithms on the subsequent
slides, answer the following four questions:
1. What happens if you execute it with the input 6?

2. lIs this a recursive algorithm?
3. What does it do in general?
4. What is its asymptotic complexity?

ICC Theory

Algo1

1. What happens if you execute it with the input 6?
2. s this arecursive algorithm?
3. Whatdoesitdoin general?
4. What s its asymptotic complexity?
input : an integer n Line O 2. Non recursive
output : an integer , , 3. Adding the odd numbers from
1 if n equals 0 Line 3 6 0 ; 1 to 2n-1 (which is equal to n?)
2 return: 0 Lined 6 0 1 4. Complexity:
3 k<0 Line 6 6 0+1=1 1 Instructions before the loop starts
. Ine +1= (Line 1-3): 3
4 fOI’j from 1 to 2n-1 * Max. number of instructions per loop
5 if (jis odd) Line4 6 1 1+1=2 iteration (Line 4-6) = 4;
k Fk +j * Number of loop iterations = 2n-1;
S ¢ B Line 4 6 1 2+1=3 . ITotal=3+4*(2n-1)=8n-1 =0(n)
return: inear
Line 6 6 1+3=4 3

ICC Theory

B wNe

Algo2

What happens if you execute it with the input 6?
Is this a recursive algorithm?

What does it do in general?

What is its asymptotic complexity?

input : an integer n -
output : an integer Line0 6

return: n? Line 1 36

1.6%2 =236

2. Non recursive

3. Computes the square

4. Complexity: ©(1) constant

ICC Theory

Algo3

Additional steps

er level
algo3 P
input : an integer n algo3(6) 12-1+25=36 3 (+,-,assign)
output : an integer 1
if n equals 0 '
return: 0 algo3(5) 10-1 + 1{5 =25 3
return: 2n-1 + algo3(n-1) v :
. algo3(4) 8-1+9=16 3
Height = n 1
#calls=n +1 :
1.0+1+3+5+7+9+ 11 =36 a|g03(3) 6-1+4=9 3
2. Recursive J
3. Adding the odd numbers from 1 to 2n-1 i =' 3
(which is equal to n?) 2iosi2) A 1” k
4. Complexity: ¥ :
« Max. number of instructions in addition to algo3(1) 2-1+0=1 3
recursive call = 3 4
» Height of the recursive stack n+1 \1/
« Total = 3 * (n+1) = O(n) linear '
! algo3(0) 0 2

ICC Theory

Algo4

algo3(6)

algo4
input : an integer n
output : an integer n—2k <1
if n equals 0 n—1<2k
return: 0 st
i 2
if n equals 1 #calls=Fk + 1
return: 1
return: n + algo4(n-2) Height=k
1.0+2+4+6=12 #calls = k+1

2. Recursive

3. If nis even, it adds the even numbers from 0
to n. If n is odd, it adds the odd numbers from
0 to n.

4. Complexity:
* Max. number of instructions in addition to
recursive call = 3
* Height of the recursive stack n/2 + 1
+ Total =3 * ((n-1)/2 + 1) = O(n) linear

algo3(4)

algo3(2)

algo3(0)

Additional steps

per level
6+6=12 3(2 comp., +)
4+2=6 3
2+0=2 3
0)

ICC Theory

Exercise: Algo5

Consider the following algorithm
1. What happens if you execute it with input 47
2. What does it compute?
3. Determine its order of complexity

algo5
input : an integern >1
output : an integer
k<0
forifrom 1 ton
s<0
forjfrom 1 ton
s<s+1
k<—k+s
return: k

10

ICC Theory

Exercise: Algod

Consider the following algorithm
1. What happens if you execute it with input 47
2. What does it compute?
3. Determine its order of complexity

algo5

input : an integern >1
output : an integer

1 k<0

2 forifrom 1ton

s<0

forjfrom 1 ton
s<s+1

k<k+s

[return: k

o O bW

II_-—

Line O

Line 1 0 ? ? ?

Line 2 0 1 ? ?

Line 3 0 1 0 ? \
Line 4 0 1 0 1

Line 5 0 1 1 1 >
Line 6 4 1 4 /

ICC Theory

Exercise: Algo5

Consider the following algorithm
1. What happens if you execute it with input 47
2. What does it compute?
3. Determine its order of complexity

algos 1.(1+1+1+1)+(1+1+1+1)+(1+1+1+1)+(1+1+1+1) = 16
input : an integern >1
output : an integer

2.1t computes n?

k<0 3. CompIeX|ty
for i from 1 to n Max. number of instructions in inner loop (over j): ca. 4
s<0 « Max. number of iterations of the inner loop: n
for j from 1 to n « Max. number of steps in the outer loop (over i): 5 + 4*n (inner
ses+1 loop) o |
kk+s « Max. number of iterations of the outer loop (over i) =n

« Total=n* (5 + 4n) = 5n + 4n? = ©(n2) quadratic
return: k () (N9 g

12

ICC Theory

Exercise: Algo6

Consider the following algorithm

1. What happens if you execute it with input 47
2. What does it compute?

3. Determine its order of complexity

algo6 3. Complexity:

input : an integern 21 « Instructions in the inner loop (line 4-5): ca. 3 (constant)
output : an integer - lterations of the inner loop: (n-i)

1 k<0 * Instructions in the outer loop without the inner loop: 5 (const)
2 forifrom 1ton * Instructions of the algorithm = sum of instructions over all

3 s<0 iterations of the outer loop (line 2-6) =

4 forjfromiton ,

5 s<s+1 L(n—) =Y n- Y i=n2- T =2 2o g(n2)
6 k<k+s

7 return: k

1. (1+41+4141)+(1+1+1)+(21+1)+(1) =

2. It computes sum of number up to n -

ICC Theory

Exercise: Algo7

Consider the following algorithm
1. What happens if you execute it with input 47

2. Determine its order of complexity. Answer: e(nStIog n} |
eps per leve

algo7(4)

algo7 7+7=14 log(n)
input : an integer n AT
output : an integer
if n equals 0 algo7(3) - log(n
return: 0 c s=0+1+2 e (n)
s<0 !
k<1 | —
= algo7(2)
while k < n T <=0+1+2 3+1=4 log(n)
s<S+k
* ,
ke2%k algo7(1) y
return: s + algo7(n-1) c=0+1 1+0=1 log(n)
lterations of_the while loop: 7
i2> ;gn v algo7(0) 0 log(n) 14

ICC Theory

Complexity

= Consider a computer that needs 1s to execute any
instructions. How much time does it take to
execute one of the following algorithm on an input
of the size n=1'000'0007?
* Algorithm A with complexity O(1)
* Algorithm B with complexity O(n)

* Algorithm C with complexity O(n?)

* Algorithm D with complexity O(log,(n))

1day = 8.5 - 10%s 210= 1000 (kilo)
1 week= 6 * 10°s 220=1'000'000 (mega)
1year = 3 - 107s 230~ 1°000’000’000 (giga)

15

ICC Theory

* Algorithm B wit
* Algorithm C wit
* Algorithm D wit

Complexity

= Consider a computer that needs 1s to execute any
instructions. How much time does it take to

execute one of the following algorithm on an input

of the size n=1'000°0007?
* Algorithm A with complexity O(1) : 1s

N comp
N comp

N comp

1day = 8.5+ 10%

1 week= 6 -

lyear = 3 -

10°s
107s

exity O(n) : 10%s = 1.65 weeks

(
exity O(n?): 1072s = 33’000 years
exity O(log,(n)): 20s

210 1'000 (kilo)
220=1'000°000 (mega)
230=1’000’000’000 (giga)

16

CCCCCCCCC

Write an Algorithm: Product

= Given a list L of numbers of size n, and an
integer p, check if the product of any two
numbers in L is equal to p.

17

ICC Theory

Product

checkProduct

input : a list L, its size n, and an integer p
output : true/false

for i from 1ton
forjfrom 1ton
if (L[i]*L[]] = p)
return true
return false

Complexity: ©(n2) because we have n iterations of
the loop over i, and for every iteration of i, we do n
iterations of the loop over j.

18

ICC Theory

Write an Algorithm: Sum of matrix elements

= Given a matrix M of size n x n, compute the sum
of the elements below the diagonal.

3 4 0 5
1 1 3 9
2 3 7 0
4 1 1 3

19

ICC Theory

Write an Algorithm: Sum of matrix elements

= Given a matrix M of size n x n, compute the sum
of the elements below the diagonal.

1,1 1,2 1,3 1,4 Indices
(row, column)

2,1 2,2 2,3 2,4
3,1 3,2 3,3 3,4
4,1 4,2 4,3 4,4

From row 2 to n.
From col 1 to row-1

ICC Theory

Sum of Matrix elements (n x n)

1,1 1,2 1,3 1,4 From row 2 to n.
From col 1 to row-1

2,1 2,2 23 24

3,1 32 33 3,4 matrixSum
input : atable M of n xn
41 4,2 43 4,4 output : sum of elements below the diagonal
s<0
for row from 2 to n

for col from 1 to row-1

s < s + Mfrow][col]

return s

Complexity: ©(n2) because we iterate over n-2 rows, and for every row r, we go

_ n—-1)n _n®> n
overr-1 columns. ¥, r—1=Y"1s = % === O(n?)

ICC Theory

Sum of Matrix elements (n x m)

= Does this algorithm also work for a Matrix of size

n X m, where n # m?

matrixSum
input : a table M of n x n
output : sum of elements below the diagonal

s<0

for row from 2 to n

for col from 1 to row-1
s < s + Mfrow][col]
return s

22

ICC Theory

Sum of Matrix elements (n x m)

= Does this algorithm also work for a Matrix of size
n X m, where n # m?

— Element 6,5 is missing!

matrixSum
input : a table M of n x n
output : sum of elements below the diagonal

s<0

for row from 2 to n

for col from 1 to row-1
s < s + Mfrow][col]
return s

23

ICC Theory

Sum of Matrix elements (n x m)

= Does this algorithm also work for a Matrix of size
n X m, where n # m?

— Element 6,5 is missing!

matrixSum
input : a table M of n x n
output : sum of elements below the diagonal
s<0
for row from 2 to n
for col from 1 to g1 min(row-1,m)
s < s + M[row][col]
return s

24

CCCCCCCCC

Write an Algorithm: Trains

= Given a list of cities named 1,2,3,..,n and a table
T of size n x n that stores the direct train
connections between these cities, I.e.,
if T(i,)) is 1, then there is a direct train going from
city i to city j, if T(i,j) is O, then there is no direct
train from i to j.

= Given an algorithm that returns yes, if there is a
city that does not have any train connection?
(Note that we need to check that there is no train
from and to this city.)

25

ICC Theory

Trains

allCityHaveATrainConnection
input : a Table T of size n x n
output : true or false

hasConn < list with n entries.

forifrom 1ton Initialize all elements in hasConn to 0
hasConn[i] <0 The number of instruction in this loop is proportional to n.

forifrom1ton]

for j from 1 ton
if (T[i][[]=1) - Go through all the connections (i j) in the table and
hasConn[i] < 1; mark that city i and city j have a connection
haSCOhﬂ[j] « 1’_ The number of instructions in this loop is proportional to n2.

fo.r | from 1 to _n _ Check is there is one city without a connection. If yes,
if (hasConn[l] -) then return true.

return true The number of instruction in this loop is proportional to n.
return false

Complexity: n + n2+ n = O(n?) 26

ICC Theory

Trains

Other algorithms you can write:
* Find a city with no outgoing train connections
 Find a city with no incoming train connections
* Find a city with the same number incoming as
outgoing connections

27

ICC Theory

Questions ?

28

