Information, Computation, and Communication

Training

Representative Algorithms

Complexity	Example Behavior	Example Algorithm
Θ(log n)	Look at only log n elements of the input. Split the input into at least half (or more)	Binary search (Recherche dichotomique)
Θ(n)	Look at each input element once	Linear search
Θ(n • log n)	Split input into half (which can be done at most log n times) At each split look at each element once	Merge sort (tri fusion)
Θ(n²)	Look at each pair of elements (i,j)	Insertion sort
Θ(n³)	Look at each triple of element (i,j,k)	Floyd's shortest path algorithm
Θ(2 ⁿ)	Look at all subset of a list or all permutation of a list or all paths in a graph	Create a list of all binary numbers of length n, e.g., input: 3 output:{{0,0,0},{0,0,1},{0,1,0},{0,1,1}, {1,0,0},{1,0,1},{1,1,0},{1,1,1}}

In this table "look at element x" means to do a constant number instructions for element x, e.g., compare x with 3, add x to another variable,...

Exercise: Execution

What happens if you execute this algorithm with a = 32 and b = 48 and r = 15?

gcd
input: a,b,r integers strictly greater than 0
output : x
repeat
$r \leftarrow a \mod b //rest$ of the division a/b
$a \leftarrow b$
$b \leftarrow r$
as long as $r > 0$
return: a

Iter.	а	b	r
Init	32	48	15
1	48	32	32
2	32	16	16
3	16	0	0

Complexity: logarithmic in the value of the inputs (i.e., linear in the number of bits)

See https://en.wikipedia.org/wiki/Euclidean_algorithm#Algorithmic_efficiency

(You are not expected to compute the complexity of this algorithm yourself.)

Exercise: Execution

 What happens if you execute this algorithm with L={1,2,3,4,5} and n = 5

algorithm
input: list L of size n
output : x
$x \leftarrow 0$
for i from 1 to n
$x \leftarrow 10 \cdot x + L[i]$
return: x

Iteration	х
Init	0
1	1
2	10 + 2 = 12
3	120 + 3 = 123
4	1230 + 4 = 1234
5	12340 + 5 = 12345

Complexity: $\Theta(n)$ because we have n iteration of the loop.

Exercise

- For each of the algorithms on the subsequent slides, answer the following four questions:
 - 1. What happens if you execute it with the input 6?
 - 2. Is this a recursive algorithm?
 - 3. What does it do in general?
 - 4. What is its asymptotic complexity?

- 1. What happens if you execute it with the input 6?
- 2. Is this a recursive algorithm?
- 3. What does it do in general?
- 4. What is its asymptotic complexity?

algo1			
input : an integer n			
output : an integer			
1 if n equals 0			
2 return: 0			
3 <i>k</i> ← 0			
4 for j from 1 to 2n-1			
5 if (j is odd)			
$6 \tilde{k} \leftarrow k + \tilde{j}$			
7 return: k			

Line	n	k	j
Line 0	6	?	?
Line 3	6	0	?
Line 4	6	0	1
Line 6	6	0+1=1	1
Line 4	6	1	1+1=2
Line 4	6	1	2+1=3
Line 6	6	1+3=4	3

1.
$$k = 1 + 3 + 5 + 7 + 9 + 11 = 36$$

- 2. Non recursive
- 3. Adding the odd numbers from 1 to 2n-1 (which is equal to n²)
- 4. Complexity:
 - Instructions before the loop starts (Line 1-3): 3
 - Max. number of instructions per loop iteration (Line 4-6) = 4;
 - Number of loop iterations = 2n-1;
 - Total = 3 + 4 * (2n-1) = 8n 1 = Θ(n) linear

- 1. What happens if you execute it with the input 6?
- 2. Is this a recursive algorithm?
- 3. What does it do in general?
- 4. What is its asymptotic complexity?

algo2
input : an integer n
output : an integer
return: n ²

Line	n	
Line 0	6	
Line 1	36	

- $1.6^2 = 36$
- 2. Non recursive
- 3. Computes the square
- 4. Complexity: Θ(1) constant

Additional steps per level

algo3

input : an integer n output : an integer

if n equals 0

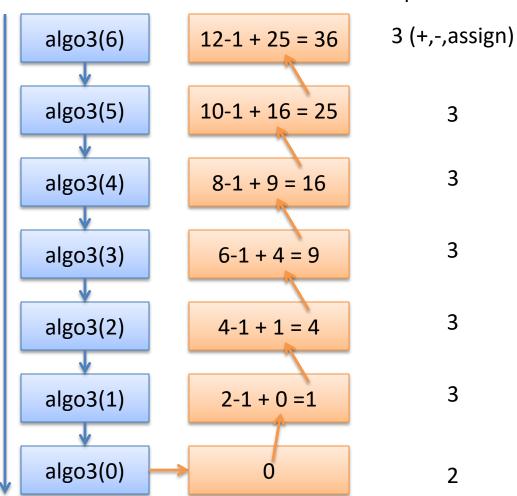
return: 0

return: 2n-1 + **algo3**(n-1)

Height = n #calls = n +1

$$1.0 + 1 + 3 + 5 + 7 + 9 + 11 = 36$$

- 2. Recursive
- 3. Adding the odd numbers from 1 to 2n-1 (which is equal to n²)
- 4. Complexity:
 - Max. number of instructions in addition to recursive call = 3
 - Height of the recursive stack n+1
 - Total = $3 * (n+1) = \Theta(n)$ linear



Additional steps per level

3(2 comp., +)

algo4

input : an integer n output : an integer

if n equals 0

return: 0

if n equals 1

return: 1

return: n + algo4(n-2)

1.0 + 2 + 4 + 6 = 12

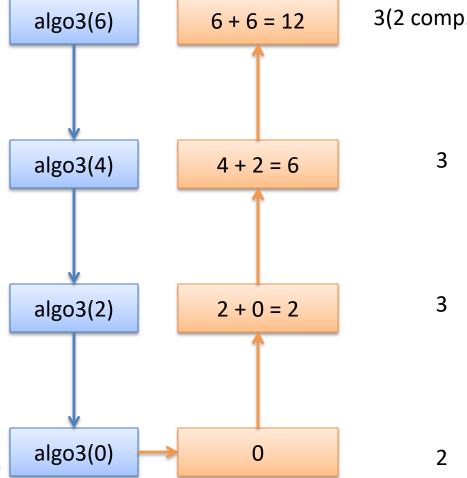
Height=k

 $n-2k \leq 1$ $n-1 \leq 2k$

#calls = k + 1

#calls = k+1

- 2. Recursive
- 3. If n is even, it adds the even numbers from 0 to n. If n is odd, it adds the odd numbers from 0 to n.
- 4. Complexity:
 - Max. number of instructions in addition to recursive call = 3
 - Height of the recursive stack n/2 + 1
 - Total = $3 * ((n-1)/2 + 1) = \Theta(n)$ linear



Consider the following algorithm

- 1. What happens if you execute it with input 4?
- 2. What does it compute?
- 3. Determine its order of complexity

```
algo5
input : an integer n ≥ 1
output : an integer
k \leftarrow 0
for i from 1 to n
s \leftarrow 0
for j from 1 to n
s \leftarrow s + 1
k \leftarrow k + s
return: k
```

Consider the following algorithm

- 1. What happens if you execute it with input 4?
- 2. What does it compute?
- 3. Determine its order of complexity

algo5		
input : an integer n ≥ 1		
output : an integer		
1 <i>k</i> ← 0		
2 for i from 1 to n		
3 s ← 0		
4 for j from 1 to n		
$5 \qquad s \leftarrow s + 1$		
$6 k \leftarrow k + s$		
7 return: k		

Line	k	i	S	j	
Line 0	?	?	?	?	
Line 1	0	?	?	?	
Line 2	0	1	?	?	
Line 3	0	1	0	?	
Line 4	0	1	0	1	4
Line 5	0	1	1	1	

Line 6	4	1	4		

Consider the following algorithm

- 1. What happens if you execute it with input 4?
- 2. What does it compute?
- 3. Determine its order of complexity

```
algo5
input : an integer n ≥ 1
output : an integer
k \leftarrow 0
for i from 1 to n
s \leftarrow 0
for j from 1 to n
s \leftarrow s + 1
k \leftarrow k + s
return: k
```

$$1.(1+1+1+1)+(1+1+1+1)+(1+1+1+1)+(1+1+1+1) = 16$$

- 2. It computes n²
- 3. Complexity:
 - Max. number of instructions in inner loop (over j): ca. 4
 - Max. number of iterations of the inner loop: n
 - Max. number of steps in the outer loop (over i): 5 + 4*n (inner loop)
 - Max. number of iterations of the outer loop (over i) = n
 - Total = $n * (5 + 4n) = 5n + 4n^2 = \Theta(n^2)$ quadratic

Consider the following algorithm

- 1. What happens if you execute it with input 4?
- 2. What does it compute?
- 3. Determine its order of complexity

algo6input : an integer $n \ge 1$ output : an integer1 $k \leftarrow 0$ 2 for i from 1 to n3 $s \leftarrow 0$ 4 for j from i to n5 $s \leftarrow s + 1$ 6 $k \leftarrow k + s$ 7 return: k

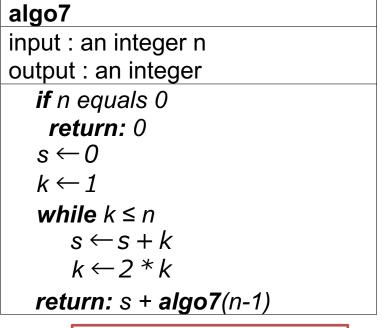
- 3. Complexity:
 - Instructions in the inner loop (line 4-5): ca. 3 (constant)
 - Iterations of the inner loop: (n-i)
 - Instructions in the outer loop without the inner loop: 5 (const)
 - Instructions of the algorithm = sum of instructions over all iterations of the outer loop (line 2-6) =

$$\sum_{i=1}^{n} (n-i) = \sum_{i=1}^{n} n - \sum_{i=1}^{n} i = n^2 - \frac{n \cdot (n+1)}{2} = \frac{n^2}{2} - \frac{n}{2} = \Theta(n^2)$$

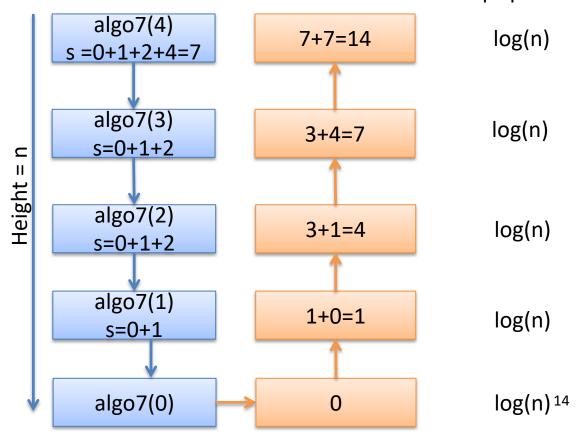
- 1. (1+1+1+1)+(1+1+1)+(1+1)+(1) = 10
- 2. It computes sum of number up to n

Consider the following algorithm

- 1. What happens if you execute it with input 4?
- 2. Determine its order of complexity. Answer: Θ(n log n)
 Steps per level



Iterations of the while loop: $2^i > n$ $i > \log n$



Complexity

- Consider a computer that needs 1s to execute any instructions. How much time does it take to execute one of the following algorithm on an input of the size n=1'000'000?
 - Algorithm A with complexity O(1)
 - Algorithm B with complexity O(n)
 - Algorithm C with complexity O(n²)
 - Algorithm D with complexity O(log₂(n))

```
1 day \approx 8.5 \cdot 10^4s 2^{10} \approx 1'000 \text{ (kilo)}

1 week \approx 6 \cdot 10^5s 2^{20} \approx 1'000'000 \text{ (mega)}

1 year \approx 3 \cdot 10^7s 2^{30} \approx 1'000'000'000 \text{ (giga)}
```

Complexity

- Consider a computer that needs 1s to execute any instructions. How much time does it take to execute one of the following algorithm on an input of the size n=1'000'000?
 - Algorithm A with complexity O(1): 1s
 - Algorithm B with complexity O(n): 10⁶s ≈ 1.65 weeks
 - Algorithm C with complexity O(n²): 10¹²s ≈ 33'000 years
 - Algorithm D with complexity O(log₂(n)): 20s

```
1 day \approx 8.5 \cdot 10^4s 2^{10} \approx 1'000 \text{ (kilo)}

1 week \approx 6 \cdot 10^5s 2^{20} \approx 1'000'000 \text{ (mega)}

1 year \approx 3 \cdot 10^7s 2^{30} \approx 1'000'000'000 \text{ (giga)}
```

Write an Algorithm: Product

 Given a list L of numbers of size n, and an integer p, check if the product of any two numbers in L is equal to p.

Product

checkProduct

input: a list L, its size n, and an integer p

output: true/false

for i from 1 to n
 for j from 1 to n
 if (L[i]*L[j] = p)
 return true
return false

Complexity: $\Theta(n^2)$ because we have n iterations of the loop over i, and for every iteration of i, we do n iterations of the loop over j.

Write an Algorithm: Sum of matrix elements

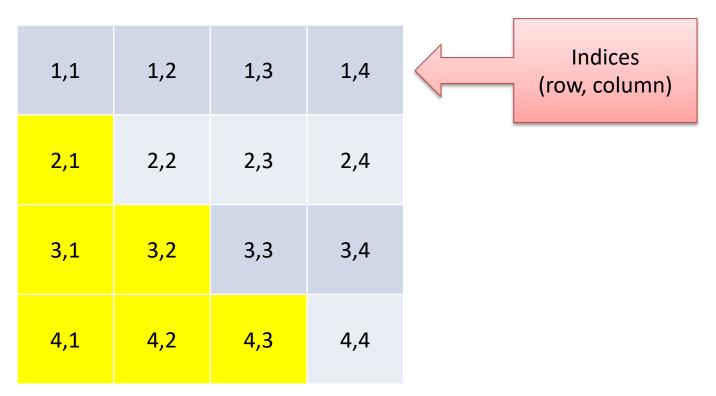
 Given a matrix M of size n x n, compute the sum of the elements below the diagonal.

3	4	0	5
1	1	3	9
2	3	7	0
4	1	1	3

Sum = 12

Write an Algorithm: Sum of matrix elements

 Given a matrix M of size n x n, compute the sum of the elements below the diagonal.



From row 2 to n. From col 1 to row-1

Sum of Matrix elements (n x n)

1,1	1,2	1,3	1,4
2,1	2,2	2,3	2,4
3,1	3,2	3,3	3,4
4,1	4,2	4,3	4,4

From row 2 to n. From col 1 to row-1

matrixSum

input: a table M of n x n output: sum of elements below the diagonal

$$s \leftarrow 0$$

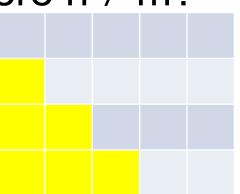
for row from 2 to n
for col from 1 to row-1
 $s \leftarrow s + M[row][col]$
return s

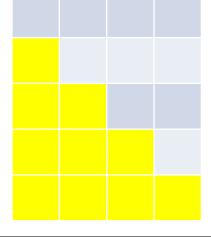
Complexity: $\Theta(n^2)$ because we iterate over n-2 rows, and for every row r, we go over r-1 columns. $\sum_{r=2}^n r - 1 = \sum_{s=1}^{n-1} s = \frac{(n-1)\cdot n}{2} = \frac{n^2}{2} - \frac{n}{2} = \Theta(n^2)$

Sum of Matrix elements (n x m)

Does this algorithm also work for a Matrix of size

n x m, where $n \neq m$?





matrixSum

input: a table M of n x n

output: sum of elements below the diagonal

$$s \leftarrow 0$$

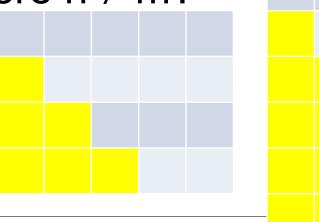
for row from 2 to n for col from 1 to row-1 $s \leftarrow s + M[row][col]$

return s

Sum of Matrix elements (n x m)

Does this algorithm also work for a Matrix of size

n x m, where $n \neq m$?



Element 6,5 is missing!

matrixSum

input: a table M of n x n

output : sum of elements below the diagonal

$$s \leftarrow 0$$

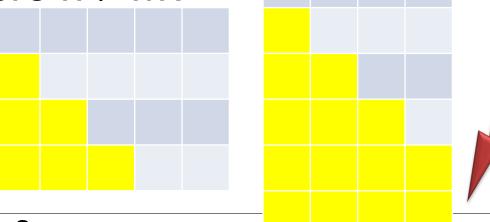
for row from 2 to n for col from 1 to row-1 $s \leftarrow s + M[row][col]$

return s

Sum of Matrix elements (n x m)

Does this algorithm also work for a Matrix of size

n x m, where $n \neq m$?



matrixSum

input : a table M of n x n

output : sum of elements below the diagonal

$$s \leftarrow 0$$

for row from 2 to n for col from 1 to real-1 min(row-1,m) $s \leftarrow s + M[row][col]$ return s Element 6,5 is missing!

Write an Algorithm: Trains

- Given a list of cities named 1,2,3,..,n and a table T of size n x n that stores the direct train connections between these cities, i.e., if T(i,j) is 1, then there is a direct train going from city i to city j, if T(i,j) is 0, then there is no direct train from i to j.
- Given an algorithm that returns yes, if there is a city that does not have any train connection? (Note that we need to check that there is no train from and to this city.)

Trains

allCityHaveATrainConnection

input : a Table T of size n x n

output: true or false

hasConn ← list with n entries.

for i from 1 to n hasConn[i] ← 0

Initialize all elements in hasConn to 0

The number of instruction in this loop is proportional to n.

for i from 1 to n

for j from 1 to n

if (T[i][j] = 1)

hasConn[i] \leftarrow 1;

hasConn[j] \leftarrow 1;

for i from 1 to n

if (hasConn[i] == 0)

return true

return false

Go through all the connections (i,j) in the table and mark that city i and city j have a connection

The number of instructions in this loop is proportional to n².

Check is there is one city without a connection. If yes, then return true.

The number of instruction in this loop is proportional to n.

Complexity: $n + n^2 + n = \Theta(n^2)$

26

Trains

Other algorithms you can write:

- Find a city with no outgoing train connections
- Find a city with no incoming train connections
- Find a city with the same number incoming as outgoing connections

Questions?

