
ICC Module Systems – Memory Hierarchies

1

Information, Computation and Communication

Memory Hierarchies

ICC Module Systems – Memory Hierarchies

2

Advertisement

Commerce

94’000’000’000’000’000’000’000 bytes in
2022 (94・1021 = 94 zettabyte)

Source: https://techjury.net/

Stream of Data

Every day in 2022:
• 100 billion (109) WhatsApp messages
• 333.2 billion (109) emails were sent
• 1.145 trillion (1012) MB were generated

Life

Science

ICC Module Systems – Memory Hierarchies

3

How and Where to Store Data?

ALURegisters
Memory
for data

Memory for
instructions

Instruction Pointer

+
1

Decoder

ICC Module Systems – Memory Hierarchies

4

§ Overview of technologies used to store data (in storage
or memory)

§ Understand the concept of Memory Hierarchies:
• Why are they used?
• How are they implemented?
• What are their implications?

Today’s Objectives

ICC Module Systems – Memory Hierarchies

5

1. Characteristics and Technology
2. Cache Principle
3. Functionality
4. Details
5. Example
6. Locality Principle

Today’s Agenda

ICC Module Systems – Memory Hierarchies

6

Part 1: Technology

ICC Module Systems – Memory Hierarchies

7

§ Performance
• Latency (s) = time needed to access one byte from the medium
• Bandwidth (B/s) = number of consecutive bytes that can be accessed per

second (also called data rate)

§ Storage (Size)
• Capacity (B) = number of bytes that can be stored on the medium
• Costs (CHF/B) = costs per unit (e.g., GB) of the medium

§ Retention
• Volatile memory only maintains data if device is powered
• Non-volatile memory maintains data if power is lost.

Important Characteristics

ICC Module Systems – Memory Hierarchies

8

Technologies

CD, DVD

USB FLASH

RAM Random Access Memory
or Main Memory

Hard Disk Array

2m

2m

1.2m

0.5m
0.5m

0.
1m

Registers

Cache Memory

On-Chip

Off-Chip Hard Disk SSD (Solid State Drive)

Distance to the processor

Magnetic tape robot

Volatile

Non-volatile

ICC Module Systems – Memory Hierarchies

9

Device Text Image Audio Video

10KB 2 pages

100KB 1 photo

1MB 1 book 1 photo HD 1m MP3

10MB Cache 1m HiFi

100MB CDs

1GB DVDs 1h HiFi 1h video

10GB Blueray, RAM 1h video HD

100GB Flash Library

1TB Hard disk

10TB Magnetic tape Library of
Congress (US)

1000 movies

Capacity

ICC Module Systems – Memory Hierarchies

11

§ A smartphone has a processor with 2 GHz (one clock tick every
0.5 ns) and a Flash memory with a latency of 5 µs. How many
clock ticks does it take to access the memory (read some data)?

§ 5 µs/0.5 ns = 5 * 10-6 / 5 * 10-10 = 104 = 10’000 clock ticks

§ A smartphone has also RAM (off-chip memory) that can be
accessed within 100 ns. How many clock ticks does it take to
read data from the RAM?

§ 100 ns/0.5 ns = 100 * 10-9 / 5 * 10-10 = 200 clock ticks

§ Data in the registers can be used immediately, without delay.

Examples/Exercises

50x faster

ICC Module Systems – Memory Hierarchies

12

Memory/Storage Hierarchy
1 GHz clock

Proc

On-chip memory
(Cache)

Off-chip memory
(RAM/Main memory)

FLASH (aka solid-state) drive

Hard disk drive

Magnetic tape

1-10ns, 100MB
10-9s, 108B

100ns, 100GB
10-7s, 1011B

10µs, 1TB
10-5s, 1012B

1ms, 1TB
10-3s, 1012B

minutes, 1PB
60s, 1015B

St
or

ag
e

M
em

or
y

Organized autom
atically

Volatile!!!

Organized sem
i-autom

atically

Non-volatile!!

Memory forgets the data when it is turned off.
Storage remembers the data when it is turned off.

ICC Module Systems – Memory Hierarchies

13

Example: My Computer

Proc

Off-chip memory

On-chip
memory

(1) Processor 2.4 GHz: Cache size: 6MB; Access time: 1/2.4 * 10-9 ≈ 0.4ns
(2) Memory (RAM): Size 16 GB; Access time: 10-100ns (Bandwidth: GB/s)
(3) Storage (flash, hard drive): Size 1TB; Latency: µs (Bandwidth: GB/s)

FLASH Storage

ICC Module Systems – Memory Hierarchies

14

Proc

Cache

RAM

iPhone 15 Pro https://www.apple.com/iphone-15-pro/specs/ and Wikipedia

FLASH Storage

https://www.apple.com/iphone-15-pro/specs/

ICC Module Systems – Memory Hierarchies

15

Part 2: Cache Principle

ICC Module Systems – Memory Hierarchies

16

§ Big (has large capacity)
§ Fast (is accessible at high speed)
§ Not possible…

§ Too expensive
§ Consumes too much energy
§ Occupies too much space

Ideal Memory

ICC Module Systems – Memory Hierarchies

17

Situation: Technology Offers Us

speed

capacity

Off-chip
memory

On-chip
memory

• On-chip memory: fast but small
• Off-chip memory: big but slow

Proc

Cache
On-chip memory

RAM
Off-chip memory

ICC Module Systems – Memory Hierarchies

18

Purpose of a Cache

speed

capacity

???Off-chip
memory

On-chip
memory

ideally, we want all
data at processor

speed!

ICC Module Systems – Memory Hierarchies

19

Analogy with Real Life
Clothes in your suitcase
• Limited space
• Temporary use

• Time for a trip
• According to the climate
• Selected colors

• With you

... but in your closet
• All your clothes
• Permanent
• Only at home

ICC Module Systems – Memory Hierarchies

20

§ We move things from one level of “memory” to the next
§ We put in the “nearest memory” what we believe we

will need soon

What Happens in this Example?

ICC Module Systems – Memory Hierarchies

21

§ Data passes from one level to the other
§ We try to keep in the fast memory the data that is going

to be used soon
§ This is the principle of caching

What Happens in a Computer’s Memory

ICC Module Systems – Memory Hierarchies

22

Part 3: Cache Functionality

ICC Module Systems – Memory Hierarchies

23

Cache and Main Memory

Proc.
Registers

Cache
On-chip Memory

RAM/Main Memory
Off-chip Memory

ICC Module Systems – Memory Hierarchies

24

Cache and Main Memory:
if information required by processor is in cache

Proc.
Registers

Cache
On-chip Memory

in cache immediate access

(1) Processor is
asking for data

(2) Cache responds
immediately

1 2

ICC Module Systems – Memory Hierarchies

25

Cache and Main Memory:
if required information is not in cache

Proc.
Registers

Cache
On-chip Memory

RAM/Main Memory
Off-chip Memory

Not in cache (1) Processor is
asking for data

(2) Access request
forwarded to
RAM

(3) Processor is
waiting for
response

2

1 3

ICC Module Systems – Memory Hierarchies

26

Part 4: Memory Hierarchy in Detail

ICC Module Systems – Memory Hierarchies

27

§ Memory consists of words
◦ Typically, 4 or 8 bytes (32 or 64 bits)

§ Every word has an address between 0 and N

Memory from Processor’s Point of View

ICC Module Systems – Memory Hierarchies

28

Memory from Processor’s Point of View

…
.

Array of Words

0
1
2
3
4

N

ICC Module Systems – Memory Hierarchies

29

§ Processor asks the memory for the word in address A
§ Memory returns the content of the word to the

processor
§ (Typically) the processor places it in a register

Memory from Processor’s Point of View

ICC Module Systems – Memory Hierarchies

30

Memory from Processor’s Point of View

…
.

0
1
2
3
4

N

processor

read @ address 4

ICC Module Systems – Memory Hierarchies

31

Memory from Processor’s Point of View

…
.

0
1
2
3
4

N

processor

ICC Module Systems – Memory Hierarchies

32

§ Unit of transfer: a block
§ The cache is organized in

blocks
§ The RAM is organized in

blocks
§ The transfer between the

two is done in blocks

Physical Memory Implementation

RAM

…
.

0
4

N

Cache

..

processor

word (32 or 64 bits)

block (4 words)
(128 or 256 bits)

ICC Module Systems – Memory Hierarchies

33

§ How to we know which
blocks of the RAM are in the
cache?
• Each block stores its address

§ Transfer the data
§ Insert the address

Physical Memory Implementation

Cache
…

.

23 17 90 148
dataaddress

ICC Module Systems – Memory Hierarchies

34

§ How to we know which
blocks of the RAM are in the
cache?
• Each block stores its address

§ Transfer the data
§ Insert the address

Physical Memory Implementation

Cache
…

.

8 23 17 90 14

ICC Module Systems – Memory Hierarchies

35

How does the processor read a word…
1. …if it is in the cache?
2. …if it is not in the cache?
How does the processor write a word...
3. …if it is in the cache?
4. …if it is not in the cache?
5. What happens if the cache is full? (Replace a block)
6. What happens if replaced block has been modified?

Six Questions

ICC Module Systems – Memory Hierarchies

36

Cache

RAM

1. Processor sends address of word
1. Read a Word in Cache

23 17 90 1048

40

23

0
4
8

12

45

17

100

90

16

104

read @address 9

Processor

ICC Module Systems – Memory Hierarchies

37

Cache

RAM

1. Processor sends address of word
2. Cache checks if word is present

1. Read a Word in Cache

23 17 90 1048

40

23

0
4
8

12

45

17

100

90

16

104

Processor

ICC Module Systems – Memory Hierarchies

38

Cache

RAM

1. Processor sends address of word
2. Cache checks if word is present
3. If yes, cache sends word

1. Read a Word in Cache

23 17 90 1048

40

23

0
4
8

12

45

17

100

90

16

104

17

Processor

ICC Module Systems – Memory Hierarchies

39

Cache

RAM

1. Processor sends address of word
2. Read a Word not in Cache

23 17 90 1048

40

23

0
4
8

12

45

17

100

90

16

104

read @address 2

Processor

ICC Module Systems – Memory Hierarchies

40

Cache

RAM

1. Processor sends address of word
2. Cache checks if word is present

2. Read a Word not in Cache

23 17 90 1048

40

23

0
4
8

12

45

17

100

90

16

104

Processor

ICC Module Systems – Memory Hierarchies

41

1. Processor sends address of word
2. Cache checks if word is present
3. If not, cache miss:

cache loads memory block
from RAM

Cache

RAM

2. Read a Word not in Cache

23 17 90 1048

40

23

0
4
8

12

45

17

100

90

16

104

Processor

block 0

ICC Module Systems – Memory Hierarchies

42

1. Processor sends address of word
2. Cache checks if word is present
3. If not, cache miss:

cache loads memory block
from RAM

4. RAM returns block

Cache

RAM

2. Read a Word not in Cache

23 17 90 1048

40

23

0
4
8

12

45

17

100

90

16

104

40 45 100 16

Processor

ICC Module Systems – Memory Hierarchies

43

1. Processor sends address of word
2. Cache checks if word is present
3. If not, cache miss:

cache loads memory block
from RAM

4. RAM returns block
5. Cache stores block+address

Cache

RAM

2. Read a Word not in Cache

40
23

45
17

100
90

16
104

0
8

40

23

0
4
8

12

45

17

100

90

16

104

Processor

ICC Module Systems – Memory Hierarchies

44

1. Processor sends address of word
2. Cache checks if word is present
3. If not, cache miss:

cache loads memory block
from RAM

4. RAM returns block
5. Cache stores block+address
6. Cache sends word

Cache

RAM

2. Read a Word not in Cache

40
23

45
17

100
90

16
104

0
8

40

23

0
4
8

12

45

17

100

90

16

104

100

Processor

ICC Module Systems – Memory Hierarchies

45

§ It is almost identical to a read!
How does Processor Write a Word?

ICC Module Systems – Memory Hierarchies

46

1. Processor sends address of word

Cache

RAM

3. Write a Word in Cache

23 17 90 1048

40

23

0
4
8

12

45

17

100

90

16

104

write 28 @ address 9

Processor

ICC Module Systems – Memory Hierarchies

47

1. Processor sends address of word
2. Cache checks if word is present

Cache

RAM

Processor

3. Write a Word in Cache

23 17 90 1048

40

23

0
4
8

12

45

17

100

90

16

104

ICC Module Systems – Memory Hierarchies

48

1. Processor sends address of word
2. Cache checks if word is present
3. If yes, cache writes word and sends

a confirmation to processor Cache

RAM

Processor

3. Write a Word in Cache

23 28 90 1048

40

23

0
4
8

12

45

17

100

90

16

104

confirmation

ICC Module Systems – Memory Hierarchies

49

1. Processor sends address of word
2. Cache checks if word is present
3. If not, cache miss:

cache loads memory block
from RAM

Cache

RAM

Processor

4. Write a Word not in Cache

23 17 90 1048

40

23

0
4
8

12

45

17

100

90

16

104

write 10 @address 2

block 0

ICC Module Systems – Memory Hierarchies

50

1. Processor sends address of word
2. Cache checks if word is present
3. If not, cache miss:

cache loads memory block
from RAM

4. RAM returns block

Cache

RAM

Processor

4. Write a Word not in Cache

23 17 90 1048

40

23

0
4
8

12

45

17

100

90

16

104

40 45 100 16

ICC Module Systems – Memory Hierarchies

51

1. Processor sends address of word
2. Cache checks if word is present
3. If not, cache miss:

cache loads memory block
from RAM

4. RAM returns block
5. Cache stores block+address

Cache

RAM

Processor

4. Write a Word not in Cache

40
23

45
17

100
90

16
104

0
8

40

23

0
4
8

12

45

17

100

90

16

104

ICC Module Systems – Memory Hierarchies

52

1. Processor sends address of word
2. Cache checks if word is present
3. If not, cache miss:

cache loads memory block
from RAM

4. RAM returns block
5. Cache stores block+address
6. Cache writes word and

sends confirmation to
processor

Cache

RAM

Processor

4. Write a Word not in Cache

40
23

45
17

10
90

16
104

0
8

40

23

0
4
8

12

45

17

100

90

16

104

confirmation

ICC Module Systems – Memory Hierarchies

53

§ We need to replace a block
§ Which block to choose?
§ There are different strategies one could choose from.
§ We discuss LRU (Least Recently Used) strategy:

• Replaces the block that used the least recently
• Adds a counter to every block indicating how long this block

was unused
• Counter is updated at every access:

+1 if block is unused and set to 1 is block is used

5. What Happens if Cache is Full?

Cache
40
23

45
17

100
90

16
104

0
8

1
2

ICC Module Systems – Memory Hierarchies

54

1. Processor sends address of word
2. Cache checks if word is present
3. If not, cache miss:

identify block to replace.
LRU strategy chooses
least recently used block.

Continue as usual…

Cache

RAM

Processor

5. What Happens if Cache is Full?

40
23

45
17

100
90

16
104

0
8

40
0

23

0
4
8

12

45
5

17

100
0

90

16
5

104

read @address 4

1
2

ICC Module Systems – Memory Hierarchies

55

1. Processor sends address of word
2. Cache checks if word is present
3. If not, cache miss:

identify block to replace.
LRU strategy chooses
least recently used block

4. Cache requests block
5. RAM returns block

Cache

RAM

Processor

5. What Happens if Cache is Full?

40
23

45
17

100
90

16
104

0
8

40
0

23

0
4
8

12

45
5

17

100
0

90

16
5

104

read @address 4

1
2

0 5 0 5 block 4

ICC Module Systems – Memory Hierarchies

56

1. Processor sends address of word
2. Cache checks if word is present
3. If not, cache miss:

identify block to replace.
LRU strategy chooses
least recently used block

4. Cache loads block
5. RAM returns block
6. Cache updates block and

counters and sends word

Cache

RAM

Processor

5. What Happens if Cache is Full?

40
0

45
5

100
0

16
5

0
4

40
0

23

0
4
8

12

45
5

17

100
0

90

16
5

104

2
1

0

ICC Module Systems – Memory Hierarchies

57

§ We have to send the content to the RAM before
replacing the block

6. What Happens if Block was Modified?

ICC Module Systems – Memory Hierarchies

58

1. Processor sends address of word
2. Cache checks if word is present
3. If not, cache miss:

identify block to replace.
LRU strategy chooses
least recently used block.

Cache

RAM

Processor

6. What Happens if Block was Modified?

40
23

45
28

100
90

16
104

0
8

40
0

23

0
4
8

12

45
5

17

100
0

90

16
5

104

read @address 4

1
2

ICC Module Systems – Memory Hierarchies

59

1. Processor sends address of word
2. Cache checks if word is present
3. If not, cache miss:

identify block to replace.
LRU strategy chooses
least recently used block.

4. Write block to RAM

Cache

RAM

Processor

6. What Happens if Block was Modified?

40
23

45
28

100
90

16
104

0
8

40
0

23

0
4
8

12

45
5

17

100
0

90

16
5

104

read @address 4

1
2

23 28 90 104

ICC Module Systems – Memory Hierarchies

60

1. Processor sends address of word
2. Cache checks if word is present
3. If not, cache miss:

identify block to replace.
LRU strategy chooses
least recently used block.

4. Write block to RAM

Cache

RAM

Processor

6. What Happens if Block was Modified?

40
23

45
28

100
90

16
104

0
8

40
0

23

0
4
8

12

45
5

17

100
0

90

16
5

104

read @address 4

1
2

23 28 90 104

ICC Module Systems – Memory Hierarchies

61

1. Processor sends address of word
2. Cache checks if word is present
3. If not, cache miss:

identify block to replace.
LRU strategy chooses
least recently used block.

4. Write block to RAM
5. Request block 4

Cache

RAM

Processor

6. What Happens if Block was Modified?

40
23

45
28

100
90

16
104

0
8

40
0

23

0
4
8

12

45
5

17

100
0

90

16
5

104

read @address 4

1
2

23 28 90 104

0 5 0 5

ICC Module Systems – Memory Hierarchies

62

1. Processor sends address of word
2. Cache checks if word is present
3. If not, cache miss:

identify block to replace.
LRU strategy chooses
least recently used block.

4. Write block to RAM
5. Request block 4 RAM

Processor

6. What Happens if Block was Modified?

read @address 4

Cache

Processor

40
0

45
5

100
0

16
5

0
4

40
0

23

0
4
8

12

45
5

28

100
0

90

16
5

104

2
1

ICC Module Systems – Memory Hierarchies

63

Part 5: Examples

ICC Module Systems – Memory Hierarchies

64

Example of Last Lesson
Sum of n integers
input: n
output: m
s ß 0

while n > 0
s ß s + n
n ß n – 1

m ß s

ICC Module Systems – Memory Hierarchies

65

We will focus on the loop
Sum of n integers
input: n
output: m
s ß 0

while n > 0
s ß s + n
n ß n – 1

m ß s

ICC Module Systems – Memory Hierarchies

66

Memory = Cache + RAM

§ Cache with 2 blocks
§ RAM with 4 blocks
§ Blocks of 4 words
§ Processor with 2 registers

(no optimization, does not
reuse content in registers)

Cache

RAM

Processor

Memory Layout

?
?

0
4
8

12

ICC Module Systems – Memory Hierarchies

67

§ m : address 3
§ n : address 13
§ s : address 14
§ s and m start with 0
§ n starts with 2

Cache

RAM

Processor

Example Data Placement in RAM

?
?

0
4
8

12

m=0

n=2 s=0

ICC Module Systems – Memory Hierarchies

68

Cache

RAM

Processor

m=0

n=2 s=0

0
4
8

12

?
?

Execution
Sum of n integers
input: n
output: m
s ß 0

while n > 0
s ß s + n
n ß n – 1

m ß s

ICC Module Systems – Memory Hierarchies

69

Cache

RAM

Processor

m=0

n=2 s=0

0
4
8

12

?
?

Execution
Sum of n integers
input: n
output: m
s ß 0

while n > 0
s ß s + n
n ß n – 1

m ß s

No of cache miss: 0
No of memory access: 0

copy r1, @13
jump_egz r1, 6

read @13 @13 = 2

n=2 s=012 read block @12

1
1

12 n=2 s=0

ICC Module Systems – Memory Hierarchies

70

Cache

RAM

Processor

m=0

n=2 s=0

0
4
8

12

12
?

Execution
Sum of n integers
input: n
output: m
s ß 0

while n > 0
s ß s + n
n ß n – 1

m ß s

No of cache miss: 1
No of memory access: 1

copy r1, @13
jump_egz r1, 6
copy r1, @14

read @14 @14 = 0

2

n=2 s=0

ICC Module Systems – Memory Hierarchies

71

Cache

RAM

Processor

m=0

n=2 s=0

0
4
8

12

12
?

Execution
Sum of n integers
input: n
output: m
s ß 0

while n > 0
s ß s + n
n ß n – 1

m ß s

No of cache miss: 1
No of memory access: 2

copy r1, @13
jump_egz r1, 6
copy r1, @14
copy r2, @13

read @13 @13 = 2

3

n=2 s=0

ICC Module Systems – Memory Hierarchies

72

Cache

RAM

Processor

m=0

n=2 s=0

0
4
8

12

12
?

Execution
Sum of n integers
input: n
output: m
s ß 0

while n > 0
s ß s + n
n ß n – 1

m ß s

No of cache miss: 1
No of memory access: 3

copy r1, @13
jump_egz r1, 6
copy r1, @14
copy r2, @13
add r1, r1, r2

n=2 s=0

ICC Module Systems – Memory Hierarchies

73

Cache

RAM

Processor

m=0

n=2 s=0

0
4
8

12

12
?

Execution
Sum of n integers
input: n
output: m
s ß 0

while n > 0
s ß s + n
n ß n – 1

m ß s

No of cache miss: 1
No of memory access: 3

copy r1, @13
jump_egz r1, 6
copy r1, @14
copy r2, @13
add r1, r1, r2 //0+2
copy @14, r1

write 2 @14 done

n=2 s=0s=2

4

ICC Module Systems – Memory Hierarchies

74

Cache

RAM

Processor

m=0

n=2 s=0

0
4
8

12

12
?

Execution
Sum of n integers
input: n
output: m
s ß 0

while n > 0
s ß s + n
n ß n – 1

m ß s

No of cache miss: 1
No of memory access: 4

copy r1, @13
jump_egz r1, 6
copy r1, @14
copy r2, @13
add r1, r1, r2 //0+2
copy @14, r1
copy r1, @13
add r1, r1, -1
copy @13, r1

write 1 @13 done

n=2 s=2n=1

5 6

ICC Module Systems – Memory Hierarchies

75

§ First loop iteration:
• 6 memory accesses
• 5 cache hits (request address was in cache)
• 1 cache miss

§ All subsequent iterations:
• 6 memory accesses
• 6 cache hits
• 0 cache miss

Memory Accesses

ICC Module Systems – Memory Hierarchies

76

Memory Accesses for this Program
§ Memory accesses: 6n (1ns/access)
§ Cache miss: 1 access to the main memory (100ns)

§ Total time with cache: 6n + 100 = 6n + 100 ns
§ Total time without cache: 600n ns

Loop Iterations Time with Cache Time w/o Cache

10 160ns 6’000ns

100 700ns 60’000ns

1’000 7’100ns 600’000ns

ICC Module Systems – Memory Hierarchies

77

§ Memory accesses (read/write)
• @ address 9
• @ address 0
• @ address 1
• @ address 4
• @ address 5
• @ address 8
• @ address 6
• @ address 9
• @ address 0

Another Example 1/5

Cache

RAM

Processor

0
2
4
6
8
..

?
?
?

0
0
0

ICC Module Systems – Memory Hierarchies

78

§ Memory accesses (read/write)
• @ address 9
• @ address 0
• @ address 1
• @ address 4
• @ address 5
• @ address 8
• @ address 6
• @ address 9
• @ address 0

Another Example 2/5

Cache

RAM

Processor

0
2
4
6
8
..

8
?
?

1
0

• – miss, load block 8
• – miss, load block 0
• – hit, reset counter
• – miss, load block 4

0
4

23
1
0

4
2
1

ICC Module Systems – Memory Hierarchies

79

§ Memory accesses (read/write)
• @ address 9
• @ address 0
• @ address 1
• @ address 4
• @ address 5
• @ address 8
• @ address 6
• @ address 9
• @ address 0

• – miss, load block 8
• – miss, load block 0
• – hit, reset counter
• – miss, load block 4
• – hit, reset counter
• – hit, reset counter

Another Example 3/5

Cache

RAM

Processor

0
2
4
6
8
..

8
0
4

5
3
1

1
4
2

ICC Module Systems – Memory Hierarchies

80

§ Memory accesses (read/write)
• @ address 9
• @ address 0
• @ address 1
• @ address 4
• @ address 5
• @ address 8
• @ address 6

• @ address 9
• @ address 0

Another Example 4/5

Cache

RAM

Processor

0
2
4
6
8
..

8
6
4

2
1
3

• – miss, load block 8
• – miss, load block 0
• – hit, reset counter
• – miss, load block 4
• – hit, reset counter
• – hit, reset counter
• – miss, load block 6

overwrite block 0
• – hit, reset counter

1
2
4

ICC Module Systems – Memory Hierarchies

81

§ Memory accesses (read/write)
• @ address 9
• @ address 0
• @ address 1
• @ address 4
• @ address 5
• @ address 8
• @ address 6

• @ address 9
• @ address 0

Another Example 5/5

Cache

RAM

Processor

0
2
4
6
8
..

8
6
0

2
3
1

• – miss, load block 8
• – miss, load block 0
• – hit, reset counter
• – miss, load block 4
• – hit, reset counter
• – hit, reset counter
• – miss, load block 6

overwrite block 0
• – hit, reset counter
• – miss, load block 0

overwrite block 4

ICC Module Systems – Memory Hierarchies

82

Part 6: Locality Principle

ICC Module Systems – Memory Hierarchies

83

There are two cases in which a cache is useful:
1. Temporal Locality: multiple accesses to the same

address within a short time span, e.g., variable n was
access multiple times in our previous example.

2. Spatial Locality: accesses to variables in the same
block, e.g., n and s were it the same block in our
example

Why is the Cache useful?

ICC Module Systems – Memory Hierarchies

84

§ In cache because there has been an access to the
same address

§ Is that realistic?
§ All “interesting” algorithms have loops that access the

same variables.

Temporal Locality

12 n=1 s=2

ICC Module Systems – Memory Hierarchies

85

§ In cache because there has been an access to an
address in the same block

§ Is that realistic?
§ All “interesting” algorithms access variables that are

linked (e.g., arrays). The compiler has to ensure that
these variables will be close in memory.

Spatial Locality

12 n s

ICC Module Systems – Memory Hierarchies

86

§ Addition of elements
in a matrix

§ Order of elements in the sum
does not matter for result

§ But order might matter for
performance

Example of Cache Influence

M(0,0) M(0,1) M(0,2) M(0,3)

M(1,0) M(1,1) M(1,2) M(1,3)

M(2,0) M(2,1) M(2,2) M(2,3)

M(3,0) M(3,1) M(3,2) M(3,3)

ICC Module Systems – Memory Hierarchies

87

Addition per Line

M(0,0) M(0,1) M(0,2) M(0,3)

M(1,0) M(1,1) M(1,2) M(1,3)

M(2,0) M(2,1) M(2,2) M(2,3)

M(3,0) M(3,1) M(3,2) M(3,3)

MatrixSumPerLines
input: matrix M 4x4
output: sum of elems
s ß 0

for r from 0 to 3
for c from 0 to 3

s ß s + M(r,c)
return s

ICC Module Systems – Memory Hierarchies

88

Addition per Column

M(0,0) M(0,1) M(0,2) M(0,3)

M(1,0) M(1,1) M(1,2) M(1,3)

M(2,0) M(2,1) M(2,2) M(2,3)

M(3,0) M(3,1) M(3,2) M(3,3)

MatrixSumPerCols
input: matrix M 4x4
output: sum of elems
s ß 0

for c from 0 to 3
for r from 0 to 3

s ß s + M(r,c)
return s

ICC Module Systems – Memory Hierarchies

89

Example Data Placement in Memory

Cache

RAM
M(0,0)
M(1,0)
M(2,0)

M(0,1)
M(1,1)
M(2,1)

M(0,2)
M(1,2)
M(2,2)

M(0,3)
M(1,3)
M(2,3)

M(3,0) M(3,1) M(3,2) M(3,3)

0
4
8

12

?
?

s=2 r=0 c=036

ICC Module Systems – Memory Hierarchies

90

§ How many cache misses in ”addition per line”?
§ How many cache misses in “addition per column”?
§ Which one is more efficient?

(assuming accessing the cache takes 1ns and
accessing the main memory takes 100ns)

Exercise

ICC Module Systems – Memory Hierarchies

91

§ Once s, r, and c are in cache, they will stay there due to
temporal locality

Analysis

Cache

RAM
M(0,0)
M(1,0)
M(2,0)

M(0,1)
M(1,1)
M(2,1)

M(0,2)
M(1,2)
M(2,2)

M(0,3)
M(1,3)
M(2,3)

M(3,0) M(3,1) M(3,2) M(3,3)

0
4
8

12

36
?

s=2 r=0 c=036

s=2 r=0 c=0

ICC Module Systems – Memory Hierarchies

92

§ 1 cache miss per line
Analysis

Cache

RAM
M(0,0)
M(1,0)
M(2,0)

M(0,1)
M(1,1)
M(2,1)

M(0,2)
M(1,2)
M(2,2)

M(0,3)
M(1,3)
M(2,3)

M(3,0) M(3,1) M(3,2) M(3,3)

0
4
8

12

36
?

s=2 r=0 c=036

s=2 r=0 c=0

M(0,0) M(0,1) M(0,2) M(0,3)

ICC Module Systems – Memory Hierarchies

93

§ One iteration of the outer loop:
• 1 cache miss to load the line
• 22 accesses:

◦ read and write access to r
◦ 4 x read and write access to s
◦ 4 x read access to M(r,c)
◦ 4 x read and write access to c

§ Total (4 iterations of outer loop):
• 5 cache misses (1 initial + 4 lines)
• 4 x 22 accesses
• 4 x 22 + 5 x 100 ≈ 600ns

Memory Access – Addition per Line

MatrixSumPerLines
input: matrix M 4x4
output: sum of elems
s ß 0

for r from 0 to 3
for c from 0 to 3

s ß s + M(r,c)
return s

Access to cache: 1ns
Access to main memory: 100ns

ICC Module Systems – Memory Hierarchies

94

§ One iteration of the outer loop:
• 4 cache misses (one per line)
• 22 accesses:

◦ read and write access to r
◦ 4 x read and write access to s
◦ 4 x read access to M(r,c)
◦ 4 x read and write access to c

§ Total:
• 17 cache misses (1 initial + 4x4

lines)
• 4 x 22 accesses
• 4 x 22 + 17 x 100 ≈ 1800ns

Memory Access – Addition per Column

MatrixSumPerCols
input: matrix M 4x4
output: sum of elems
s ß 0

for c from 0 to 3
for r from 0 to 3

s ß s + M(r,c)
return s

About 3 times slower!

ICC Module Systems – Memory Hierarchies

95

Try it Yourself!

gcc columns.c -o columns

time ./columns
cpu 4.342s

gcc lines.c -o lines

time ./lines
cpu 1.818s

About 2.4 times slower on my computer!

ICC Module Systems – Memory Hierarchies

96

§ Technology (register, RAM, Flash, Hard drives, tapes)
§ Characteristics (latency, bandwidth, capacity, costs,

volatile/non-volatile)
§ Cache Principle

• Keep data that you need close, so it can be accessed fast
• LRU (Least Recently Used) Strategy
• Works because of spatial and temporal locality principle

§ When there is a good locality, there will be a lot of
cache accessed and a good performance

Summary

