
1

ICC Module System – Lesson Computer Architecture

Information, Computation,
Communication

Computer Architecture



2

ICC Module System – Lesson Computer Architecture

► Now that we have created algorithms,
how can we construct systems that execute them? 

Question

???

sum of first 
n integers

Input: n
Output: m

s ← 0
while n > 0

s ← s + n
n ← n – 1

m ← s



3

ICC Module System – Lesson Computer Architecture

From Algorithms to Computers

Hardware
Software

sum of first 
n integers

Input: n
Output: m

s ← 0
while n > 0

s ← s + n
n ← n – 1

m ← s

sum of first 
n integers

Input: r1
Output: r2
1: copy r3, 0
2: jump_egz r1, 6
3: add r3, r3, r1
4: add r1, r1, -1
5: jump 2
6: copy r2, r3

sum of first 
n integers

Input: r1
Output: r2
1: 0100010100000000
2: 0101100000001010
3: 0001001001011010
4: 0001010101000000
5: 0000101010101111
6: 0101000001100101



4

ICC Module System – Lesson Computer Architecture

From Algorithms to Computers

Hardware
Software

sum of first 
n integers

Input: n
Output: m

s ← 0
while n > 0

s ← s + n
n ← n – 1

m ← s

sum of first 
n integers

Input: r1
Output: r2
1: copy r3, 0
2: jump_egz r1, 6
3: add r3, r3, r1
4: add r1, r1, -1
5: jump 2
6: copy r2, r3

sum of first 
n integers

Input: r1
Output: r2
1: 0100010100000000
2: 0101100000001010
3: 0001001001011010
4: 0001010101000000
5: 0000101010101111
6: 0101000001100101

Step 0

We will start 
with the 

algorithms 
that you have 

studied..

Step 1

… write them in 
terms of a few 

basic instructions..

Step 3

… and present 
them in a way a 
computer can 
understand.

Step 2

In parallel, we will create an 
abstract machine..

Step 4

…that we will implement 
with transistors.



5

ICC Module System – Lesson Computer Architecture

► In order to describe the idea of an algorithm, we use pseudo code.

► Let’s consider an example

From Algorithms to Computers (Step 0)

sum
Input: n
Output: m
s ← 0
while n > 0

s ← s + n
n ← n – 1

m ← s



6

ICC Module System – Lesson Computer Architecture

From Algorithms to Computers (Step 1)

Hardware
Software

sum of first 
n integers

Input: n
Output: m

s ← 0
while n > 0

s ← s + n
n ← n – 1

m ← s

sum of first 
n integers

Input: r1
Output: r2
1: copy r3, 0
2: jump_egz r1, 6
3: add r3, r3, r1
4: add r1, r1, -1
5: jump 2
6: copy r2, r3

We will rewrite algorithm in terms of a few basic instructions, 
which will have physical counter parts (hardware to perform them).



7

ICC Module System – Lesson Computer Architecture

► In all computers, values 
are store in so-called 
registers, which are 
physical implementations 
of variables with a fix 
number of bits (usually 
32 or 64 bits)

Rewrite Algorithm using Basic Instructions

sum of first 
n integers

Input: n
Output: m
s ← 0
while n > 0

s ← s + n
n ← n – 1

m ← s

Our machine
needs to be able to 
remember values, 

e.g., value for s



8

ICC Module System – Lesson Computer Architecture

► A register is the physical implementation of the notion of variable

► A machine usually has a small number of registers (a few dozen)

► For large data (array, list,..) we will use external memory (RAM)
► Registers are usually represented by r1, r2, r3,…

► We replace all arbitrary variable names with register names
§ n è r1

§ m è r2

§ s è r3

Registers



9

ICC Module System – Lesson Computer Architecture

Step 1.1
sum
Input: n
Output: m
s ← 0
while n > 0

s ← s + n
n ← n – 1

m ← s

sum

Input: r1
Output: r2
r3 ← 0
while r1 > 0

r3 ← r3 + r1
r1 ← r1 – 1

r2 ← r3

è r1
è r2

è r3



10

ICC Module System – Lesson Computer Architecture

sum
Input: r1
Output: r2
r3 ← 0
while r1 > 0

r3 ← r3 + r1
r1 ← r1 – 1

r2 ← r3

Next…

We will need to 
assign values

to registers

We will use a
basic instruction,

e.g., 
 “copy r3, 0”

for r3 ← 0
or

“copy r2, r3”
for r2 ← r3



11

ICC Module System – Lesson Computer Architecture

sum

Input: r1
Output: r2
r3 ← 0
while r1 > 0

r3 ← r3 + r1
r1 ← r1 – 1

r2 ← r3

Step 1.2
sum

Input: r1
Output: r2
copy r3, 0
while r1 > 0

r3 ← r3 + r1
r1 ← r1 – 1

copy r2, r3



12

ICC Module System – Lesson Computer Architecture

sum
Input: r1
Output: r2
copy r3, 0
while r1 > 0

r3 ← r3 + r1
r1 ← r1 – 1

copy r2, r3

Next…

We will need to 
assign new values

to registers
after applying 

arithmetic operations

We will use 
basic instructions,

e.g., 
 “add r3, r3, r1”
for r3 ← r3 + r1



13

ICC Module System – Lesson Computer Architecture

sum of first 
n integers

Input: r1
Output: r2
copy r3, 0
while r1 > 0

r3 ← r3 + r1
r1 ← r1 – 1

copy r2, r3

Step 1.3
sum of first 
n integers

Input: r1
Output: r2
copy r3, 0
while r1 > 0
   add r3, r3, r1
   add r1, r1, -1
copy r2, r3



14

ICC Module System – Lesson Computer Architecture

► There is a limited number of instructions, e.g.,
§ copy for assignment
§ add for addition
§ mul for multiplication

► All instructions (i) have a single result,  (ii) take one or two registers 
(or constants) as operands

► Instructions are written in the following form:
name destination, operand1, operand2

► Every computation in an algorithm is rewritten in these basic 
instructions, e.g., 
a ← a * ( b + c) with a in r1, b in r2 and c in r3 could be rewritten as.
add r2, r2, r3
mul r1, r1, r2

Basic Instructions



15

ICC Module System – Lesson Computer Architecture

sum
Input: r1
Output: r2
copy r3, 0
while r1 > 0

add r3, r3, r1
add r1, r1, -1

copy r2, r3

► All control structures (if-conditions, 
while-loop, for-loops, ..) will be 
replaced by jumps to labels

► We will use line numbers as 
labels

► We will have a few different 
(conditional) jump instructions, 
e.g., 
§ jump 2:
always jump to line 2

§ jump_egz r1, 6:
jump to line 6, if r1 is 
equal to zero

§ jump_eg r1, r2, 6:
jump to line 6, if r1 is 
equal to r2

Next…



16

ICC Module System – Lesson Computer Architecture

Step 1.4

sum
Input: r1
Output: r2
copy r3, 0
while r1 > 0

add r3, r3, r1
add r1, r1, -1

copy r2, r3

sum
Input: r1
Output: r2
1: copy r3, 0
2: jump_egz r1, 6
3: add r3, r3, r1
4: add r1, r1, -1
5: jump 2
6: copy r2, r3

This is a program in assembly (or assembler) language.



17

ICC Module System – Lesson Computer Architecture

Example in x86 Assembly Language (Intel)

r1: n

r3: s

General form: name src, dst
• movl… move long (32bit)
• movq...move quad (64 bit)
• cmpl…compare long
• conditional jump: cmpl+jle

Try it yourself: g++ -S sum.cc -o sum.a



18

ICC Module System – Lesson Computer Architecture

► Example in C 

Example in x86 Assembly Language (Intel)

#include <stdio.h>

int main () {

int a = 10;
int b = 45;
int add, mul;

__asm__ ( "addl %%ebx, %%eax;" : "=a" (add) : "a" (a) , "b" (b) );
__asm__ ( "imull %%ebx, %%eax;" : "=a" (mul) : "a" (a) , "b" (b) );

printf("Add = %d \n", add);
printf("Mul = %d \n", mul);

}

Compile with: g++ assembly.c -o assembly –g
Run: ./assembly
Add = 55
Mul = 450

g++ -S assembly.cc -o assembly.a



19

ICC Module System – Lesson Computer Architecture

► We use “registers” to mimic variables in hardware

► We rewrite our program in terms of basic “instructions”
§ instructions to load/copy values into a registers

§ instructions for arithmetic (and binary) operations

§ instructions to jump to another instruction under some condition

► We use a restricted set of previously defined instructions

► E.g., ARM or Intel processors have their own set of instructions 
(x86, ARM, Risc-V ISA – instruction set architecture)

Summary



20

ICC Module System – Lesson Computer Architecture

From Algorithms to Computers (Step 2)

Hardware
Software

sum of first 
n integers

Input: n
Output: m

s ← 0
while n > 0

s ← s + n
n ← n – 1

m ← s

sum of first 
n integers

Input: r1
Output: r2
1: copy r3, 0
2: jump_egz r1, 6
3: add r3, r3, r1
4: add r1, r1, -1
5: jump 2
6: copy r2, r3



21

ICC Module System – Lesson Computer Architecture

► Arithmetic logic unit (ALU) for arithmetic (and bitwise) 
operations (+,-,*,/,mod, &, |, ^,<<,>>,..)

What do we need to calculate?

32 +
24 =

56

ALU
32

24

56

sum



22

ICC Module System – Lesson Computer Architecture

► Registers to save the values of the operands and the result

What do we need to calculate?

r1: 2376
r2: ?
r3: 12
r4: ?
r5: 54

54 Registers
r5

r1
2376

r3
12

w
rite

read
read



23

ICC Module System – Lesson Computer Architecture

A Circuit to Calculate

ALURegisters

A

B

write A B

Op
read

sum r3, r3, r1

r3 r1r3 sum

12

2376

23882388



24

ICC Module System – Lesson Computer Architecture

► Our algorithm or program needs to be stored somewhere

► We need a way to control where we are

What else do we need?

1: move r3, 0
2: jump_neqz r1, 0, 6
3: sum r3, r3, r1
4: sum    r1, r1, -1
5: jump 2
6: move r2, r3

3:

Memory for 
instructions

Line
Instruction

sum r3, r3, r1

Next instruction
4: Instruction Pointer

4: 3:w
rite

read



25

ICC Module System – Lesson Computer Architecture

How to control where we are?

Instruction Pointer

Memory for 
instructions

Line
Instruction

Decoder
sum r3, r3, r1

r3 r1r3 sum

3

A simple circuit that separates the elements in an instruction



26

ICC Module System – Lesson Computer Architecture

► Usually we pass to the next line

How to control where we are?

Instruction Pointer
3

+
1

4

► If we get an instruction jump, we switch to the given line

5: jump 2
Instruction Pointer

5

+
1

6

2
jump

3: sum    r3, r3, r1



27

ICC Module System – Lesson Computer Architecture

A Circuit to Control the Instruction Pointer

Memory for 
instructions

Line
Instruction

Decoder
sum r3, r3, r1

r3 r1r3 sum

Instruction Pointer
3

4

+
1



28

ICC Module System – Lesson Computer Architecture

Decoder

A Circuit to Control the Instruction Pointer

Memory for
instructions

Line
Instruction

jump_neqz r1, 0, 6

r1 0- neqz?

Instruction Pointer
2

+
1

3

6

6

neqz!

jump



29

ICC Module System – Lesson Computer Architecture

Memory to Store More Data

Memory 
for data

read

write
Where to read and write?

ALURegisters

A

B

write A B

Op
read

Relatively small: only 
a few dozens registers



30

ICC Module System – Lesson Computer Architecture

Processor or Central Processing Unit (CPU)

Memory 
for data

Memory 
for instructions

ALURegisters

Decoder

Instruction Pointer

+
1



31

ICC Module System – Lesson Computer Architecture

Memory 
for instructions

Processor or Central Processing Unit (CPU)

Memory 
for data

ALURegisters

Decoder

Instruction Pointer

+
1

2.4 GHz = at most 2.4 109 instructions per second



32

ICC Module System – Lesson Computer Architecture

► Architecture based on a 1945 description by John von Neumann
§ Processing unit that contains an arithmetic logic unit and processor 

registers
§ Control unit that contains an instruction register and program 

counter
§ Memory that stores data and instructions
§ External mass storage

§ Input and output mechanisms

von Neumann Architecture

General purpose computing device!



33

ICC Module System – Lesson Computer Architecture

From Algorithms to Computers (Step 3)

Hardware
Software

sum of first 
n integers

Input: n
Output: m

s ← 0
while n > 0

s ← s + n
n ← n – 1

m ← s

sum of first 
n integers

Input: r1
Output: r2
1: copy r3, 0
2: jump_egz r1, 6
3: add r3, r3, r1
4: add r1, r1, -1
5: jump 2
6: copy r2, r3

sum of first 
n integers

Input: r1
Output: r2
1: 0100010100000000
2: 0101100000001010
3: 0001001001011010
4: 0001010101000000
5: 0000101010101111
6: 0101000001100101



34

ICC Module System – Lesson Computer Architecture

► We can invent a simple encoding (cf. Lesson on “Information Representation”) :
§ A few bits for the name of the instruction (with 8 bits we can encode 256 different instructions)
§ A few bits for the registers (with 4 bits we can address 16 registers, so with 12 bits we can 

store two operands and one destination register)
§ And so on and so forth..

► So we can get by with 32 or 64 bits, as if to encode a typical integer

How to Encode Instructions ?

Memory for
instructions

Line
Instruction

1: copy      r3, 0
2: jump_neqz r1, 0, 6
3: sum r3, r3, r1
4: sum r1, r1, -1
5: jump      2
6: copy      r2, r3

sum     r3, r3, r1

000000000000 00010010 0011 0011 0001

Unused

The value 592’993 represent the instruction sum r3, r3, r1



35

ICC Module System – Lesson Computer Architecture

How to Encode Instructions ?

somme des premiers 
n entiers

entrée : r1
sortie : r2
1: charge   r3, 0
2: cont_ppe r1, 0, 6
3: somme    r3, r3, r1
4: somme    r1, r1, -1
5: continue 2
6: charge   r2, r3

Assembly Language Machine Language in Binary

sum
Input: r1
Output: r2
1: copy r3, 0
2: jump_negz r1, 6
3: add r3, r3, r1
4: add r1, r1, -1
5: jump 2
6: copy r2, r3

sum
Input: r1
Output: r2
1: 00000001001100000000
2: 00000101000101100000
3: 00000010001100110001
4: 00000010000100011111
5: 00000100001000000000
6: 00000001001000110000



36

ICC Module System – Lesson Computer Architecture

Example in Machine Language (Intel)

Try it yourself: g++ sum.cc -o sum.a



37

ICC Module System – Lesson Computer Architecture

From Algorithms to Computers

Hardware
Software

sum of first 
n integers

Input: n
Output: m

s ← 0
while n > 0

s ← s + n
n ← n – 1

m ← s

sum of first 
n integers

Input: r1
Output: r2
1: copy r3, 0
2: jump_egz r1, 6
3: add r3, r3, r1
4: add r1, r1, -1
5: jump 2
6: copy r2, r3

sum of first 
n integers

Input: r1
Output: r2
1: 0100010100000000
2: 0101100000001010
3: 0001001001011010
4: 0001010101000000
5: 0000101010101111
6: 0101000001100101



38

ICC Module System – Lesson Computer Architecture

► So far, our machine is abstract, completely independent of the underlying 
technology

► Even binary encoding is not a necessity

► Different technologies are possible:
§ Electro-mechanical (e.g., relays)

§ Electronic (e.g., tubes or transistors)
§ Optical

Technologies



39

ICC Module System – Lesson Computer Architecture

► Very well suited to represent information in binary

A Battery has Two Voltage Levels

1.5V

0V

‘1’

‘0’



40

ICC Module System – Lesson Computer Architecture

Switch (Interruptible Wire)

‘1’

‘1’ ‘1’

undefined‘0’

‘0’ ‘0’

undefined

Does not propagate its state if the connection is open

Propagates its states if the connection is closed



41

ICC Module System – Lesson Computer Architecture

Transistor = Controllable Switch

‘1’

‘1’ ‘1’

undefined‘0’

‘0’ ‘0’

undefined



42

ICC Module System – Lesson Computer Architecture

Transistor = Controllable Switch

‘0’

‘1’p-mos‘1’

‘0’

n-mos

gate

source

drain



43

ICC Module System – Lesson Computer Architecture

Inverter (NOT Gate)
‘1’

‘0’

A X

1.5V

0V

Gate = electronic circuit that can do basic computation



44

ICC Module System – Lesson Computer Architecture

Inverter (NOT Gate)

‘1’‘0’

‘1’

‘0’

‘1’

‘1’

‘0’

‘0’

‘1’

‘0’

A X

A X
0 1
1 0

Truth table

= A X

Logic Symbol



45

ICC Module System – Lesson Computer Architecture

► Describes the function of a circuit

► For instance, consider a circuit with 2 inputs and 1 output
§ 2² = 4 combinations (possible states)

► Inverter from previous slide (1 input, 1 output)

Truth Table of a Circuit

Input 1 Input 2 Output

Input Output

0 1

1 0

0 0 ?

0 1 ?

1 0 ?

1 1 ?



46

ICC Module System – Lesson Computer Architecture

Drawing a Truth Table

Input 1 Input 2 Input 3 Output
0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

1

…

…

…

…

…

…



47

ICC Module System – Lesson Computer Architecture

► The only way to get a ‘0’is to put two ‘1’ at the inputs
A NAND B: the output is‘0’only if A AND B are‘1’

A Circuit “NAND” (NOT AND)

‘0’

‘1’

A

A

B

‘1’

B

A B X =
not (A and B)

0 0 1
0 1 1
1 0 1
1 1 0

NAND

X



48

ICC Module System – Lesson Computer Architecture

► We already know NOT and NAND

► NOT and NAND gates can implement any Boolean function. 
How many different Boolean functions with two inputs exist?

Circuits for Other Functions

A B F0 F1 F2 F3 F4 F5 F6 F7
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1

A B F8 F9 F10 F11 F12 F13 F14 F15
0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1

A NOT A

0 1

1 0

A B A NAND B
0 0 1
0 1 1
1 0 1
1 1 0

NOR F9 NOT B F11 NOT A F13 NAND 1

0 AND F2 A F4 B XOR OR

Boolean function: 𝔹n→𝔹m

Do I have to 
know all of 

them? No, only 
NOT, AND, OR

The three correspond to 
negation (¬), 

conjunction (∧) and 
disjunction (∨).



49

ICC Module System – Lesson Computer Architecture

► We can build more functions using the known gates

AND and OR

A AND B = NOT (A NAND B) A OR B = NOT ((NOT A) AND (NOT B))

A B X = A AND B
0 0 0
0 1 0
1 0 0
1 1 1

A B A OR B
0 0 0
0 1 1
1 0 1
1 1 1

s t u
1 1 1
1 0 0
0 1 0
0 0 0

A
B X A

B

X
s

t

u



50

ICC Module System – Lesson Computer Architecture

Circuits Can Implement Arbitrary Functions

A B C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Sum = (NOT A AND NOT B AND     C) OR
(NOT A AND     B AND NOT C) OR
(    A AND NOT B AND NOT C) OR
(    A AND     B AND     C) 

Decimal

0

1

1

2

1

2

2

3

Carry = (NOT A AND     B AND     C) OR
(    A AND NOT B AND     C) OR
(    A AND     B AND NOT C) OR
(    A AND     B AND     C) 

Carry = (NOT A AND B AND C) OR (B OR C)

Carry Sum

0 0

0 1

0 1

1 0

0 1

1 0

1 0

1 1

Sum of 1s



51

ICC Module System – Lesson Computer Architecture

Example

Y = (NOT A AND NOT B AND     C) OR
(NOT A AND     B AND NOT C) OR
(    A AND NOT B AND NOT C) OR
(    A AND     B AND     C) 

In Verilog (a hardware description language)



52

ICC Module System – Lesson Computer Architecture

Adding is simple…

1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0   
1 0 0 1 0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 1     

A        0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 0   +
B        1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 0 1 1   =

Carry

1



53

ICC Module System – Lesson Computer Architecture

Making an Adder is simple…

… 0    1    1    1    0    0    1    0    1     

A            … 1    0    0    0    1    1    0    1    0   +
B            … 1    1    1    0    0    1    0    1    1   =

Sum

0 + 0 =   0
      0 + 1 =   1
      1 + 0 =   1
      1 + 1 = 10

0 + 0 + 0    00 
0 + 0 + 1 = 01            
0 + 1 + 0 = 01
0 + 1 + 1 = 10
1 + 0 + 0 = 01
1 + 0 + 1 = 10
1 + 1 + 0 = 10
1 + 1 + 1 = 11

We also must add the carry



54

ICC Module System – Lesson Computer Architecture

What about Registers and Memory?

Memory for
data

Memory for
instructions

ALURegisters

Decoder

Instruction Pointer

+
1

? ?

??



55

ICC Module System – Lesson Computer Architecture

► We know now how to compute:

How to Store Information?

ALU
32

24

56‘1’‘0’

‘1’

‘0’

r1: 2376
r2: 7854
r3: ?
r4: 12

7854

Registers
r2

r1
2376

r4
12

w
rite

read
read

► How can we store the result?!

?!



56

ICC Module System – Lesson Computer Architecture

► A "bistable" circuit, i.e., it can be in one of two perfectly stable 
states. A memory element of 1 bit!

A Rather Special Circuit

‘1’ ‘0’‘0’ ‘1’



57

ICC Module System – Lesson Computer Architecture

► With just a few transistors, we get 
a perfect memory circuit for all the 
bits of our registers and memories

How to Write in this Memory?

Write

Data to write Data read

‘1’‘0’

‘1’ ‘0’

‘1’ ‘0’

‘1’

r1: 2
r2: ?
r3: 3
r4: ?

5

Registers
r3

r1
2

r3
3

w
rite

read



58

ICC Module System – Lesson Computer Architecture

What about Registers and Memory?

Memory for
data

Memory for
instructions

ALURegisters

Decoder

Instruction Pointer

+
1

? ?

??



59

ICC Module System – Lesson Computer Architecture

We have reached our goal!

Architecture of a 
processor



60

ICC Module System – Lesson Computer Architecture

We have reached our goal!

Electronic circuit



61

ICC Module System – Lesson Computer Architecture

► Transistors can be extremely cheap and small:
§ A transistor costs as little as 10-8 and 10-7 cents (CHF/USD/EUR)
§ Modern device consists of Billion of transistors, e.g., Apple A17 SoC 

using in iPhone 15 Pro has about 19 Billion (109) transistors on about 
100mm2

We have reached our goal!

A VLSI circuit can have 
nowadays around 

several 109 transistors



62

ICC Module System – Lesson Computer Architecture

We have reached our goal!



63

ICC Module System – Lesson Computer Architecture

From Algorithms to Computers

Hardware
Software

sum of first 
n integers

Input: n
Output: m

s ← 0
while n > 0

s ← s + n
n ← n – 1

m ← s

sum of first 
n integers

Input: r1
Output: r2
1: copy r3, 0
2: jump_egz r1, 6
3: add r3, r3, r1
4: add r1, r1, -1
5: jump 2
6: copy r2, r3

sum of first 
n integers

Input: r1
Output: r2
1: 0100010100000000
2: 0101100000001010
3: 0001001001011010
4: 0001010101000000
5: 0000101010101111
6: 0101000001100101

Programming 
Langages

C, C++, C#, 
Java, Scala,
Python, Perl,
PHP, SQL, 
Excel, etc.

+ +



64

ICC Module System – Lesson Computer Architecture

► From Algorithms to Computers
§ Assembly code = Basic instructions

§ Processor structure (registers, ALU, instruction counter, memories)

§ Transistors use to compute and store

Summary



65

ICC Module System – Lesson Computer Architecture

► How can we make these systems faster ? 

Question

~20% per year is coming 
from the technology 

(= speed of transistors)

Exponential 
growth in 

performance:
52% per year

Architecture!



66

ICC Module System – Lesson Computer Architecture

Two simple examples to improve performance:

1. At the level of the circuit:
reduce the delay of an adder

2. At the level of the process structure:
increase the throughput of instructions

How to increase performance?

t

= Reduce delay
waiting time to get a result

= Increase the throughput
Number of results per time unit

t



67

ICC Module System – Lesson Computer Architecture

Two simple examples to improve performance:

1. At the level of the circuit:
reduce the delay of an adder

2. At the level of the process structure:
increase the throughput of instructions

How to increase performance?

t

= Reduce delay
waiting time to get a result

= Increase the throughput
Number of results per time unit

t



68

ICC Module System – Lesson Computer Architecture

Adding is simple…

1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0   
1 0 0 1 0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 1     

A        0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 0   +
B        1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 0 1 1   =

Elementary sums:
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10 = 1×21 + 0×20 = 210

Carry

1



69

ICC Module System – Lesson Computer Architecture

Making an Adder is simple…

… 0    1    1    1    0    0    1    0    1     

A            … 1    0    0    0    1    1    0    1    0   +
B            … 1    1    1    0    0    1    0    1    1   =

Sum

0 + 0 =   0
      0 + 1 =   1
      1 + 0 =   1
      1 + 1 = 10

0 + 0 + 0    00 
0 + 0 + 1 = 01            
0 + 1 + 0 = 01
0 + 1 + 1 = 10
1 + 0 + 0 = 01
1 + 0 + 1 = 10
1 + 1 + 0 = 10
1 + 1 + 1 = 11



70

ICC Module System – Lesson Computer Architecture

► The propagation 
of the carry is 
fundamental to 
an adder!

But this circuit is slow

A            … 1    0    0    0    1    1    0    1    0   +
B            … 1    1    1    0    0    1    0    1    1   =

► By default, the delay of an adder is proportional to the number 
of bits.

… 0    1    1    1    0    0    1    0    1     



71

ICC Module System – Lesson Computer Architecture

Can we do better?

Adder 64 bit

bits 0bits 63

T



72

ICC Module System – Lesson Computer Architecture

Can we do better?

Adder 32 bit

bits 0

Adder 32 bit

bits 63 Carry of bits 31



73

ICC Module System – Lesson Computer Architecture

Can we do better?

Adder 32 bit

bits 0

Adder 32 bit

bits 63
Carry of bits 31

T/2T/2

We did not win anything…



74

ICC Module System – Lesson Computer Architecture

Can we do better?

Adder 32 bit

bit 0
bit 63

T/2
‘1’

‘0’

It takes only 
half of the time!

Adder 32 bitT/2



75

ICC Module System – Lesson Computer Architecture

► We can change the performance of a circuit without changing the 
functionality.

► We can invest more transistors and more energy to get faster 
circuits.

► We can slow down circuits to save energy.

Computer Engineering



76

ICC Module System – Lesson Computer Architecture

Two simple examples to improve performance:

1. At the level of the circuit:
reduce the delay of an adder

2. At the level of the process structure:
increase the throughput of instructions

How to increase performance?

t

= Reduce delay
waiting time to get a result

= Increase the throughput
Number of results per time unit

t



77

ICC Module System – Lesson Computer Architecture

103: copy     r1, 0
104: copy     r2, -21
105: sum      r3, r7, r4
106: multiply r2, r5, r9
107: subtract r8, r7, r9
108: copy     r9, r4
109: sum      r3, r2, r1
110: subtract r5, r3, r4
111: copy     r2, r3
112: sum      r1, r2, -1
113: sum      r8, r1, -1
114: divide   r4, r1, r7
115: copy     r2, r4

Our Processor

ALU

copy   r1, 0
copy   r2, -21

sum      r3, r7, r4
multiply r2, r5, r9
subtract r8, r7, r9

copy   r9, r4

By default, we execute
one instruction at a time

Can we do better?



78

ICC Module System – Lesson Computer Architecture

103: copy     r1, 0
104: copy     r2, -21
105: sum      r3, r7, r4
106: multiply r2, r5, r9
107: subtract r8, r7, r9
108: copy     r9, r4
109: sum      r3, r2, r1
110: subtract r5, r3, r4
111: copy     r2, r3
112: sum      r1, r2, -1
113: sum      r8, r1, -1
114: divide   r4, r1, r7
115: copy     r2, r4

ALUALU

Double Throughput of Processor

copy    r1, 0 copy    r2, -21
sum     r3, r7, r4 multiply r2, r5, r9
subtract r8, r7, r9 copy    r9, r4

One could execute 
two instructions at a time !

Problem?!



79

ICC Module System – Lesson Computer Architecture

103: copy     r1, 0
104: copy     r2, -21
105: sum      r3, r7, r4
106: multiply r2, r5, r9
107: subtract r8, r7, r9
108: copy     r9, r4
109: sum      r3, r2, r1
110: subtract r5, r3, r4
111: copy     r2, r3
112: sum      r1, r2, -1
113: sum      r8, r1, -1
114: divide   r4, r1, r7
115: copy     r2, r4

ALUALU

Double Throughput of Processor

sum       r3, r2, r1 subtract  r5, r3, r4

A problem occurs when the second 
instruction needs the result of the first 

computation!
If you are not careful,
the result is wrong!

Problem?!



80

ICC Module System – Lesson Computer Architecture

103: copy     r1, 0
104: copy     r2, -21
105: sum      r3, r7, r4
106: multiply r2, r5, r9
107: subtract r8, r7, r9
108: copy     r9, r4
109: sum      r3, r2, r1
110: subtract r5, r3, r4
111: copy     r2, r3
112: sum      r1, r2, -1
113: sum      r8, r1, -1
114: divide   r4, r1, r7
115: copy     r2, r4

ALUALU

Double Throughput of Processor

sum      r3, r2, r1
subtract r5, r3, r4 copy    r2, r3
sum      r1, r2, -1
sum      r8, r1, -1 divide    r4, r1, r7

NOP
NOP

In pratice, one execute between 
one and two instructions

at a time and the result is correct!

NOP … no operation



81

ICC Module System – Lesson Computer Architecture

► All modern processors for laptops, phone, tablets, and for servers 
are of this type

► In addition, they reorder and execute the instructions before 
knowing if these instructions will be executed at all (e.g., they might 
be skipped due to an instruction like jump) 

A Superscalar Processor

ALU ALU ALU ALU

Registers

Detector of dependencies



82

ICC Module System – Lesson Computer Architecture

► We can change the system structure to run programs faster.

► We can add recourses to the processors to make them faster.

► We can use very basic processors to make them economical and 
energy efficient.

Computer Engineering



83

ICC Module System – Lesson Computer Architecture

► From Algorithms to Computers
§ Assembly code = Basic instructions

§ Processor structure (registers, ALU, instruction counter, memories)

§ Transistors use to compute and store

►  Performance
§ Reduce the delay of an adder

§ Increase the throughput of instructions 

Summary


