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Information, Computation, and Communication

Algorithm 2
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What is the complexity of this algorithm?

• How many iterations do the for and the 
while loops have?

• The for loop runs from 1 to n → n 
iterations/repetitions

• The while loop repeats if i < n. What is 
the value of i after iteration k?

• i is multiplied by 2 in every iteration → 
the value of i after iteration k is 2k

• So, after which iteration is 2k ≥ n?
• If k ≥ log2(n)
• So, the while loop has log2(n) iterations

Θ(n ・log(n))
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§ Sorting (selection sort)
§ Recursion

• Complexity of a recursive algorithm
• Binary Search (« Recherche dichotomique »)
• Merge Sort
• Fibonacci numbers
• Dynamic Programming

§ (Application of Binary Search)

Topics
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§ There are many different sorting algorithms 
(selection sort, insertion sort, bubble sort, 
merge sort ..)

§ Input: a list L of elements, e.g., integers
§ Output a sorted version of L

Sorting
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§ Divide the list into two parts:
• A sorted part (on the left, initially empty)
• An unsorted part (on the right, initially the whole list)

§ Find the smallest element in the unsorted part 
and put it at the end of the sorted part by 
swapping two elements, e.g., {5,4,6,1,2,7,8,3}

§ After 1st iteration: {1,4,6,5,2,7,8,3}
§ After 2nd iteration: {1,2,6,5,4,7,8,3}
§ After 3rd  iteration: {1,2,3,5,4,7,8,6}

Selection Sort
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§ Divide the problem:
• Find the smallest element in a list
• Put the element in the right place by swapping two 

elements

Selection Sort
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Recall Maximal Value from Last Week

Let’s create a variant to find the 
position of the minimal value:

We will use size(L) to refer to the length of the list L. 
We assume size(L) is in Θ(1).

What is the 
complexity of 
this variant?

Θ(n)
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Swap Two Elements in a List

What is the complexity of this algorithm?
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Selection Sort

Line Costs Repet.

1 ∼ 1 1

2 ∼ 1 n

3 ∼ n n

4 ∼ 1 n

5 ∼ 1 1

!
!"#

$

𝑐 𝑖 $ 𝑟 𝑖 = 1 + 2𝑛 + 𝑛% + 1 =Θ(𝑛%)Sum over the lines:

Sum over iterations of line 3:!
!"#

$

(𝑛 + 1 − 𝑖) =!
!"#

$

𝑛 +!
!"#

$

1 −!
!"#

$

𝑖 = 𝑛% + 𝑛 −
𝑛 * (𝑛 + 1)

2
= Θ(𝑛%)

Size of the list in iteration i
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§ An algorithm that calls itself
Recursive Algorithm

…

…
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§ Understand a recursive algorithm
§ Analyze the complexity of a recursive algorithm
§ Write recursive algorithm

Your Tasks
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Understanding a Recurive Algorithm
What is the output if L={5,8,6,10,3}?
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Understanding a Recurive Algorithm
What is the output if L={5,8,6,10,3}?

algo1({5,8,6,10,3})

algo1({8,6,10,3})

algo1({6,10,3})

algo1({10,3})

algo1({3})

algo1({})

x=24

x=16+8=24

x=10+6=16

x=0+10=10

x=0

x=0

Function call tree:
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Complexity

algo1({5,8,6,10,3})

algo1({8,6,10,3})

algo1({6,10,3})

Height? Cost?

n+
1

algo1({10,3})

algo1({3})

algo1({}) 3

--”--

--”--

--”--

--”--

∼ 10

T(n)=10・n + 3 = Θ(n) T(n)= T(n-1) + 10
T(0) = 3n+1 nodes ・const. cost per node = n+1 = Θ(n)
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§ Find the largest number in a list
• Input: a list L with n numbers
• Output: the largest number in this list

§ Idea of recursion: 
• Use a solution of a smaller problem (a shorter list)

§ You need to answer two questions:
1. Assume we are given the largest element in the list 

L[2:n] (list of length n-1), how would we compute the 
largest element of the list L[1:n]?

2. What is the termination condition? What is the 
largest element of a list of size 1?

Writing a Recursive Algorithm
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Question 1: from n-1 to n
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Question 2: Termination
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Find Max (Recursively)

A. Θ(log(n))
B. Θ(n)
C. Θ(n2)
D. Θ(2n)

What is the complexity of 
this algorithm?
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Complexity

rec_max({5,8,6,10,3})

rec_max({8,6,10,3})

rec_max({6,10,3})

Height? Level
cost?

n

rec_max({10,3})

rec_max({3}) 3

--”--

--”--

--”--

∼ 8

Sum of costs over all levels: T(n)= 8・(n-1) + 3 = Θ(n)
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§ Find an element in a sorted list
• Input: a sorted list L of numbers and a number x
• Output: true, if x is in L, otherwise false

§ Idea: 
• Look at the number y in the middle of L
• If x <= y, repeat the search in the left part of the list
• If x  >  y, repeat the search in the right part of the list
• Termination: x found or list empty.

Binary Search – Recherche dichotomique
(Recall see in week 6 in programming)
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Binary Search

binary_search
({1,5,6,8,10,15,20,30}, 13)

binary_search
({10,15,20,30}, 13)

binary_search
({10,15}, 13)

binary_search
({15}, 13)

false

false

false

Level
cost?

--”--

--”--

∼ 6

∼ 10

Height?

Θ(log n)
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§ About 300 copies sorted by SCIPER number
§ How many copies do you have to look at (in the 

worst case) in order to find your copy?

Application of Binary Search: 
Inspection of Exam Results
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§ Roughly 9 copies:
1. Split the pile into two piles of about half the size (~150 

copies)
2. Check the SCIPER number of the copy on the top of the 

second pile:
a) if it is your copy, you are done
b) if it is not your copy and if your SCIPER number is larger 

than the one of the copy continue your search in the second 
pile by going to Step 1,

c) otherwise continue the search in the first pile by going to 
Step 1

§ Approx. sizes of search piles: 
300, 150, 75, 38, 19, 10, 5, 3, 2, 1

Application of Binary Search: 
Inspection of Exam Results
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§ Idea: 
• Split the list in half
• Sort each half
• Merge the two sorted halfs

§ Decompose the problem
• Split list
• Merge two sorted list

Merge Sort
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Recursive Merge
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Merge

merge({5,8,10},{1,6})

merge({5,8,10},{6})

merge({8,10},{6})

merge({8,10},{})

nL+nR

Θ(nL + nR)
One element removed

at every call

Exercise: Write a non-recursive version

{8,10}

{5, 6, 8, 10}

{6, 8, 10}

{1, 5, 6, 8, 10}
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Merge Sort
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Merge Sort
merge_sort({10,5,8,6,1,10,3})

merge_sort({10,5,8}) merge_sort({6,1,10,3})

merge_sort({10}) merge_sort({5,8})

merge_sort({5}) merge_sort({8})

merge_sort({6,1}) merge_sort({10,3})

merge_sort({6}) merge_sort({1}) merge_sort({10}) merge_sort({3})
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Merge Sort
merge_sort({10,5,8,6,1,10,3})

merge_sort({10,5,8}) merge_sort({6,1,10,3})

merge_sort({10}) merge_sort({5,8})

merge_sort({5}) merge_sort({8})

merge_sort({6,1}) merge_sort({10,3})

merge merge merge

mergemerge

merge

merge_sort({6}) merge_sort({1}) merge_sort({10}) merge_sort({3})

Height? Cost?

• Height: how often can we divide n by 2?
• How many nodes? 
• Costs vary per node but we can bound the costs per level.

At each level, we merge at most n elements.

The height is log n.
= 2h+1 – 1 = 2・2log n – 1 = 2n – 1 

Θ(n・log n)

!
!"#

$
2!
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§ The recursive solution is not always the only 
solution and rarely the most efficient...

§ ...but it is sometimes much simpler and more 
practical to implement !

§ Examples : sorting, processing of recursive data 
structures (e.g. trees, graphs, ...), ...

Recursion or Not?



ICC Module Computation Lesson 2 – Computation & Algorithms II

31

Fibonacci Numbers (Recursive Version)

Month 1: 1

Month 2: 1

Month 3: 2

Month 4: 3

Month 5: 5

Month 6: 8

Named after Leonardo Fibonacci (1175-1250)

𝐹 𝑛 = 𝐹 𝑛 − 1 + 𝐹 𝑛 − 2 for 𝑛 > 1
𝐹 0 = 0 and 𝐹 1 = 1
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Fibonacci Numbers in Nature

In these pictures there are 55 curves of seeds spiraling to the left as you go outwards 
and 34 spirals of seeds spiraling to the right. A little further towards the center you 
can count 34 spirals to the left and 21 spirals to the right. These pairs of numbers are 
(almost always) neighbors in the Fibonacci series.

The lengths of the 
squares describing 
naturally appear 
spirals are often 
Fibonacci numbers.1 1

2 3

5
8

13

https://plus.maths.org/content/life-and-numbers-fibonacci

Number of ancestors 
of a drone (a male 
honey bee) is a sum 
of Fibonacci number.

https://plus.maths.org/content/life-and-numbers-fibonacci


ICC Module Computation Lesson 2 – Computation & Algorithms II

33

Fibonacci Recursive

F(5) = F(4)+F(3)

F(4) = F(3)+F(2) F(3) = F(2)+F(1)

F(3) = F(2)+F(1) F(2) = F(1)+F(0) F(2) = F(1)+F(0) F(1)

F(2) = F(1)+F(0) F(1) F(1) F(0)F(1) F(0)

F(1) F(0)

Height? Cost?

∼ 1

∼ 2

∼ 4

∼ 6

∼ 2

In each node in this tree, we have to perform a constant number of instructions.
1. How high is the tree?
2. How many nodes (function calls) are in this tree?

The height is n.

> ∑!"#
!"#
$ 2! = 2

!%#
$ − 1 = Ω(2

!
$) lower bound

< ∑!"#$ 2! = 2$%& − 1 = 𝑂 2$ upper bound

𝐹 𝑛 = 𝐹 𝑛 − 1 + 𝐹 𝑛 − 2 for 𝑛 > 1
𝐹 0 = 0 and 𝐹 1 = 1



ICC Module Computation Lesson 2 – Computation & Algorithms II

34

§ Complexity F(n)?
Exponential in n

§ Is there a better solution?

Idea: do not perform the same calculation many 
times but store the already calculated value for 
later use

Fibonacci Recursive
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§ Dynamic programming is a strategy to solve 
problems.
• It applies to problems for which we can find an 

optimal solution by breaking it down into smaller 
optimal overlapping sub-problems in a recursive 
manner.

• To solve such problems efficiently we memorize the 
solutions of sub-problems to avoid re-computation.
(This technique is called memoization.)

§ If the sub-problems are not overlapping the 
solving strategy is called ”divide and conquer”
(e.g., in merge sort)

Dynamic Programming
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Overlapping vs Non Overlapping

F(5) = F(4)+F(3)

F(4) = F(3)+F(2) F(3) = F(2)+F(1)

F(3) = F(2)+F(1) F(2) = F(1)+F(0) F(2) = F(1)+F(0) F(1)

F(2) = F(1)+F(0) F(1) F(1) F(0)F(1) F(0)

F(1) F(0)

merge_sort
({10,5,8,6,1,10,3})

merge_sort
({10,5,8})

merge_sort
({6,1,10,3})

merge_sort
({10})

merge_sort
({5,8})

merge_sort
({5})

merge_sort
({8})

merge_sort
({6,1})

merge_sort
({10,3})

merge_sort
({6})

merge_sort
({1})

merge_sort
({10})

merge_sort
({3})
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§ How to avoid recomputation?
§ Idea: store all the computed results and check if the result 

has been already computed before computing it. 

Fibonacci with Memoization (Version 1)

F(5) = F(4)+F(3)

F(4) = F(3)+F(2) F(3) = cache(3)

F(3) = F(2)+F(1) F(2) = cache(2)

F(2) = F(1)+F(0) F(1)

F(1) F(0)
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Memorize the last two computations (x and y)

Fibonacci with Memoization (Version 2)
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A. Θ(log n)
B. Θ(n)
C. Θ(n2)
D. Θ(2n)

Complexity?
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Computation of the shortest path, for example between all the train 
stations of the CFF network.

Given a graph G with vertices 1,2,..,N, consider a function called Dk(i,j) 
that returns the shortest path from i to j using only vertices 
from 1 to k as intermediate points. 

Dynamic Programming – Floyd

Key Idea of the algorithm:
The shortest path to go from i to j (e.g., Lausanne
to Zürich) is the shortest path among:

1. The shortest known path from Lausanne to 
Zürich (using nodes 1 to k-1), and

2. The path from Lausanne to Zürich by 
traversing a city not known yet (e.g., Bern)

Dk (i, j) = min {Dk −1(i, j), Dk −1(i, k) + Dk −1(k , j)}

D    (k,j)
k-1

Dk-1(i,j)

D (i,k)
k-1

Zürich 

jBiel

k-1

i 

Lausanne

k Bern
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Dynamic Programming – Floyd

k … the index of the city we 
allowed to visit (in addition to 
source and target city)

i … the index of the source city
j… the index of the target city
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Floyd’s Algorithm: Example
Lausanne   Biel  Bern    Zürich

0 133 58 ∞
133 0 45 38
58 45 0 102
∞ 38 102 0

k=1(Lausanne): Going throw Lausanne does not give any improvements.
k=2(Biel): Going throw Biel improves the distances 
• from Lausanne to Zürich and
• from Zürich to Bern

Zürich

3

1

Lausanne
( f ic t i t ious data)

4

Bern

102

58

45

38

133

Biel

2

D(i,j)
Lausanne
Biel
Bern
Zürich
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Floyd’s Algorithm: Example
Lausanne    Biel  Bern    Zürich

0 133 58 ∞
133 0 45 38
58 45 0 102
∞ 38 102 0

D2 =

Zürich

3

1

Lausanne
( f ic t i t ious data)

4

Bern

102

58

45

38

133
Lausanne          Biel        Bern    Zürich

0
133              0  
58 45 0

171 38 83 0

Biel

2

k=1(Lausanne): Going throw Lausanne does not give any improvements.
k=2(Biel): Going throw Biel improves the distances 
• from Lausanne to Zürich and
• from Zürich to Bern

D0 = D 1
Lausanne
Biel
Bern
Zürich
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Lausanne          Biel        Bern    Zürich
0

133              0         
58 45 0 

171 38 83 0

Floyd’s Algorithm: Example

D3 =

Lausanne          Biel        Bern    Zürich
0

103              0        
58 45 0

141 38 83 0

k=3 (Bern): going throw Bern improves the distances 
• from Lausanne to Biel and
• from Zürich to Lausanne
K=4 (Zürich): going throw Zürich does not give any improvements

D2 =

Note: it also works for asymmetric 
graphs (directed graphs)

Zürich

3

1

Lausanne
( f ic t i t ious data)

4

Bern

102

58

45

38

133

Biel

2
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A. Θ(n2)
B. Θ(n3)
C. Θ(n4)
D. Θ(n5)

Complexity?
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§ There is no miracle recipe to find an algorithm, 
but there exist big families of resolution 
strategies:
• decompose (e.g., “recursion”): try to solve the 

problem by decomposing it in simpler (or smaller) 
instances

• decompose and regroup (e.g., “dynamic 
programming”): memorize intermediate computations 
to avoid executing them several times

Conclusion


