
ICC Module Computation Lesson 2 – Computation & Algorithms II

1

Information, Computation, and Communication

Algorithm 2

ICC Module Computation Lesson 2 – Computation & Algorithms II

2

What is the complexity of this algorithm?

• How many iterations do the for and the
while loops have?

• The for loop runs from 1 to n → n
iterations/repetitions

• The while loop repeats if i < n. What is
the value of i after iteration k?

• i is multiplied by 2 in every iteration →
the value of i after iteration k is 2k

• So, after which iteration is 2k ≥ n?
• If k ≥ log2(n)
• So, the while loop has log2(n) iterations

Θ(n ・log(n))

ICC Module Computation Lesson 2 – Computation & Algorithms II

3

§ Sorting (selection sort)
§ Recursion

• Complexity of a recursive algorithm
• Binary Search (« Recherche dichotomique »)
• Merge Sort
• Fibonacci numbers
• Dynamic Programming

§ (Application of Binary Search)

Topics

ICC Module Computation Lesson 2 – Computation & Algorithms II

4

§ There are many different sorting algorithms
(selection sort, insertion sort, bubble sort,
merge sort ..)

§ Input: a list L of elements, e.g., integers
§ Output a sorted version of L

Sorting

ICC Module Computation Lesson 2 – Computation & Algorithms II

5

§ Divide the list into two parts:
• A sorted part (on the left, initially empty)
• An unsorted part (on the right, initially the whole list)

§ Find the smallest element in the unsorted part
and put it at the end of the sorted part by
swapping two elements, e.g., {5,4,6,1,2,7,8,3}

§ After 1st iteration: {1,4,6,5,2,7,8,3}
§ After 2nd iteration: {1,2,6,5,4,7,8,3}
§ After 3rd iteration: {1,2,3,5,4,7,8,6}

Selection Sort

ICC Module Computation Lesson 2 – Computation & Algorithms II

6

§ Divide the problem:
• Find the smallest element in a list
• Put the element in the right place by swapping two

elements

Selection Sort

ICC Module Computation Lesson 2 – Computation & Algorithms II

7

Recall Maximal Value from Last Week

Let’s create a variant to find the
position of the minimal value:

We will use size(L) to refer to the length of the list L.
We assume size(L) is in Θ(1).

What is the
complexity of
this variant?

Θ(n)

ICC Module Computation Lesson 2 – Computation & Algorithms II

8

Swap Two Elements in a List

What is the complexity of this algorithm?

ICC Module Computation Lesson 2 – Computation & Algorithms II

9

Selection Sort

Line Costs Repet.

1 ∼ 1 1

2 ∼ 1 n

3 ∼ n n

4 ∼ 1 n

5 ∼ 1 1

!
!"#

$

𝑐 𝑖 $ 𝑟 𝑖 = 1 + 2𝑛 + 𝑛% + 1 =Θ(𝑛%)Sum over the lines:

Sum over iterations of line 3:!
!"#

$

(𝑛 + 1 − 𝑖) =!
!"#

$

𝑛 +!
!"#

$

1 −!
!"#

$

𝑖 = 𝑛% + 𝑛 −
𝑛 * (𝑛 + 1)

2
= Θ(𝑛%)

Size of the list in iteration i

ICC Module Computation Lesson 2 – Computation & Algorithms II

10

§ An algorithm that calls itself
Recursive Algorithm

…

…

ICC Module Computation Lesson 2 – Computation & Algorithms II

11

§ Understand a recursive algorithm
§ Analyze the complexity of a recursive algorithm
§ Write recursive algorithm

Your Tasks

ICC Module Computation Lesson 2 – Computation & Algorithms II

12

Understanding a Recurive Algorithm
What is the output if L={5,8,6,10,3}?

ICC Module Computation Lesson 2 – Computation & Algorithms II

13

Understanding a Recurive Algorithm
What is the output if L={5,8,6,10,3}?

algo1({5,8,6,10,3})

algo1({8,6,10,3})

algo1({6,10,3})

algo1({10,3})

algo1({3})

algo1({})

x=24

x=16+8=24

x=10+6=16

x=0+10=10

x=0

x=0

Function call tree:

ICC Module Computation Lesson 2 – Computation & Algorithms II

14

Complexity

algo1({5,8,6,10,3})

algo1({8,6,10,3})

algo1({6,10,3})

Height? Cost?

n+
1

algo1({10,3})

algo1({3})

algo1({}) 3

--”--

--”--

--”--

--”--

∼ 10

T(n)=10・n + 3 = Θ(n) T(n)= T(n-1) + 10
T(0) = 3n+1 nodes ・const. cost per node = n+1 = Θ(n)

ICC Module Computation Lesson 2 – Computation & Algorithms II

15

§ Find the largest number in a list
• Input: a list L with n numbers
• Output: the largest number in this list

§ Idea of recursion:
• Use a solution of a smaller problem (a shorter list)

§ You need to answer two questions:
1. Assume we are given the largest element in the list

L[2:n] (list of length n-1), how would we compute the
largest element of the list L[1:n]?

2. What is the termination condition? What is the
largest element of a list of size 1?

Writing a Recursive Algorithm

ICC Module Computation Lesson 2 – Computation & Algorithms II

16

Question 1: from n-1 to n

ICC Module Computation Lesson 2 – Computation & Algorithms II

17

Question 2: Termination

ICC Module Computation Lesson 2 – Computation & Algorithms II

18

Find Max (Recursively)

A. Θ(log(n))
B. Θ(n)
C. Θ(n2)
D. Θ(2n)

What is the complexity of
this algorithm?

ICC Module Computation Lesson 2 – Computation & Algorithms II

19

Complexity

rec_max({5,8,6,10,3})

rec_max({8,6,10,3})

rec_max({6,10,3})

Height? Level
cost?

n

rec_max({10,3})

rec_max({3}) 3

--”--

--”--

--”--

∼ 8

Sum of costs over all levels: T(n)= 8・(n-1) + 3 = Θ(n)

ICC Module Computation Lesson 2 – Computation & Algorithms II

20

§ Find an element in a sorted list
• Input: a sorted list L of numbers and a number x
• Output: true, if x is in L, otherwise false

§ Idea:
• Look at the number y in the middle of L
• If x <= y, repeat the search in the left part of the list
• If x > y, repeat the search in the right part of the list
• Termination: x found or list empty.

Binary Search – Recherche dichotomique
(Recall see in week 6 in programming)

ICC Module Computation Lesson 2 – Computation & Algorithms II

21

Binary Search

binary_search
({1,5,6,8,10,15,20,30}, 13)

binary_search
({10,15,20,30}, 13)

binary_search
({10,15}, 13)

binary_search
({15}, 13)

false

false

false

Level
cost?

--”--

--”--

∼ 6

∼ 10

Height?

Θ(log n)

ICC Module Computation Lesson 2 – Computation & Algorithms II

22

§ About 300 copies sorted by SCIPER number
§ How many copies do you have to look at (in the

worst case) in order to find your copy?

Application of Binary Search:
Inspection of Exam Results

ICC Module Computation Lesson 2 – Computation & Algorithms II

23

§ Roughly 9 copies:
1. Split the pile into two piles of about half the size (~150

copies)
2. Check the SCIPER number of the copy on the top of the

second pile:
a) if it is your copy, you are done
b) if it is not your copy and if your SCIPER number is larger

than the one of the copy continue your search in the second
pile by going to Step 1,

c) otherwise continue the search in the first pile by going to
Step 1

§ Approx. sizes of search piles:
300, 150, 75, 38, 19, 10, 5, 3, 2, 1

Application of Binary Search:
Inspection of Exam Results

ICC Module Computation Lesson 2 – Computation & Algorithms II

24

§ Idea:
• Split the list in half
• Sort each half
• Merge the two sorted halfs

§ Decompose the problem
• Split list
• Merge two sorted list

Merge Sort

ICC Module Computation Lesson 2 – Computation & Algorithms II

25

Recursive Merge

ICC Module Computation Lesson 2 – Computation & Algorithms II

26

Merge

merge({5,8,10},{1,6})

merge({5,8,10},{6})

merge({8,10},{6})

merge({8,10},{})

nL+nR

Θ(nL + nR)
One element removed

at every call

Exercise: Write a non-recursive version

{8,10}

{5, 6, 8, 10}

{6, 8, 10}

{1, 5, 6, 8, 10}

ICC Module Computation Lesson 2 – Computation & Algorithms II

27

Merge Sort

ICC Module Computation Lesson 2 – Computation & Algorithms II

28

Merge Sort
merge_sort({10,5,8,6,1,10,3})

merge_sort({10,5,8}) merge_sort({6,1,10,3})

merge_sort({10}) merge_sort({5,8})

merge_sort({5}) merge_sort({8})

merge_sort({6,1}) merge_sort({10,3})

merge_sort({6}) merge_sort({1}) merge_sort({10}) merge_sort({3})

ICC Module Computation Lesson 2 – Computation & Algorithms II

29

Merge Sort
merge_sort({10,5,8,6,1,10,3})

merge_sort({10,5,8}) merge_sort({6,1,10,3})

merge_sort({10}) merge_sort({5,8})

merge_sort({5}) merge_sort({8})

merge_sort({6,1}) merge_sort({10,3})

merge merge merge

mergemerge

merge

merge_sort({6}) merge_sort({1}) merge_sort({10}) merge_sort({3})

Height? Cost?

• Height: how often can we divide n by 2?
• How many nodes?
• Costs vary per node but we can bound the costs per level.

At each level, we merge at most n elements.

The height is log n.
= 2h+1 – 1 = 2・2log n – 1 = 2n – 1

Θ(n・log n)

!
!"#

$
2!

ICC Module Computation Lesson 2 – Computation & Algorithms II

30

§ The recursive solution is not always the only
solution and rarely the most efficient...

§ ...but it is sometimes much simpler and more
practical to implement !

§ Examples : sorting, processing of recursive data
structures (e.g. trees, graphs, ...), ...

Recursion or Not?

ICC Module Computation Lesson 2 – Computation & Algorithms II

31

Fibonacci Numbers (Recursive Version)

Month 1: 1

Month 2: 1

Month 3: 2

Month 4: 3

Month 5: 5

Month 6: 8

Named after Leonardo Fibonacci (1175-1250)

𝐹 𝑛 = 𝐹 𝑛 − 1 + 𝐹 𝑛 − 2 for 𝑛 > 1
𝐹 0 = 0 and 𝐹 1 = 1

ICC Module Computation Lesson 2 – Computation & Algorithms II

32

Fibonacci Numbers in Nature

In these pictures there are 55 curves of seeds spiraling to the left as you go outwards
and 34 spirals of seeds spiraling to the right. A little further towards the center you
can count 34 spirals to the left and 21 spirals to the right. These pairs of numbers are
(almost always) neighbors in the Fibonacci series.

The lengths of the
squares describing
naturally appear
spirals are often
Fibonacci numbers.1 1

2 3

5
8

13

https://plus.maths.org/content/life-and-numbers-fibonacci

Number of ancestors
of a drone (a male
honey bee) is a sum
of Fibonacci number.

https://plus.maths.org/content/life-and-numbers-fibonacci

ICC Module Computation Lesson 2 – Computation & Algorithms II

33

Fibonacci Recursive

F(5) = F(4)+F(3)

F(4) = F(3)+F(2) F(3) = F(2)+F(1)

F(3) = F(2)+F(1) F(2) = F(1)+F(0) F(2) = F(1)+F(0) F(1)

F(2) = F(1)+F(0) F(1) F(1) F(0)F(1) F(0)

F(1) F(0)

Height? Cost?

∼ 1

∼ 2

∼ 4

∼ 6

∼ 2

In each node in this tree, we have to perform a constant number of instructions.
1. How high is the tree?
2. How many nodes (function calls) are in this tree?

The height is n.

> ∑!"#
!"#
$ 2! = 2

!%#
$ − 1 = Ω(2

!
$) lower bound

< ∑!"#$ 2! = 2$%& − 1 = 𝑂 2$ upper bound

𝐹 𝑛 = 𝐹 𝑛 − 1 + 𝐹 𝑛 − 2 for 𝑛 > 1
𝐹 0 = 0 and 𝐹 1 = 1

ICC Module Computation Lesson 2 – Computation & Algorithms II

34

§ Complexity F(n)?
Exponential in n

§ Is there a better solution?

Idea: do not perform the same calculation many
times but store the already calculated value for
later use

Fibonacci Recursive

ICC Module Computation Lesson 2 – Computation & Algorithms II

35

§ Dynamic programming is a strategy to solve
problems.
• It applies to problems for which we can find an

optimal solution by breaking it down into smaller
optimal overlapping sub-problems in a recursive
manner.

• To solve such problems efficiently we memorize the
solutions of sub-problems to avoid re-computation.
(This technique is called memoization.)

§ If the sub-problems are not overlapping the
solving strategy is called ”divide and conquer”
(e.g., in merge sort)

Dynamic Programming

ICC Module Computation Lesson 2 – Computation & Algorithms II

36

Overlapping vs Non Overlapping

F(5) = F(4)+F(3)

F(4) = F(3)+F(2) F(3) = F(2)+F(1)

F(3) = F(2)+F(1) F(2) = F(1)+F(0) F(2) = F(1)+F(0) F(1)

F(2) = F(1)+F(0) F(1) F(1) F(0)F(1) F(0)

F(1) F(0)

merge_sort
({10,5,8,6,1,10,3})

merge_sort
({10,5,8})

merge_sort
({6,1,10,3})

merge_sort
({10})

merge_sort
({5,8})

merge_sort
({5})

merge_sort
({8})

merge_sort
({6,1})

merge_sort
({10,3})

merge_sort
({6})

merge_sort
({1})

merge_sort
({10})

merge_sort
({3})

ICC Module Computation Lesson 2 – Computation & Algorithms II

37

§ How to avoid recomputation?
§ Idea: store all the computed results and check if the result

has been already computed before computing it.

Fibonacci with Memoization (Version 1)

F(5) = F(4)+F(3)

F(4) = F(3)+F(2) F(3) = cache(3)

F(3) = F(2)+F(1) F(2) = cache(2)

F(2) = F(1)+F(0) F(1)

F(1) F(0)

ICC Module Computation Lesson 2 – Computation & Algorithms II

38

Memorize the last two computations (x and y)

Fibonacci with Memoization (Version 2)

ICC Module Computation Lesson 2 – Computation & Algorithms II

39

A. Θ(log n)
B. Θ(n)
C. Θ(n2)
D. Θ(2n)

Complexity?

ICC Module Computation Lesson 2 – Computation & Algorithms II

40

Computation of the shortest path, for example between all the train
stations of the CFF network.

Given a graph G with vertices 1,2,..,N, consider a function called Dk(i,j)
that returns the shortest path from i to j using only vertices
from 1 to k as intermediate points.

Dynamic Programming – Floyd

Key Idea of the algorithm:
The shortest path to go from i to j (e.g., Lausanne
to Zürich) is the shortest path among:

1. The shortest known path from Lausanne to
Zürich (using nodes 1 to k-1), and

2. The path from Lausanne to Zürich by
traversing a city not known yet (e.g., Bern)

Dk (i, j) = min {Dk −1(i, j), Dk −1(i, k) + Dk −1(k , j)}

D (k,j)
k-1

Dk-1(i,j)

D (i,k)
k-1

Zürich

jBiel

k-1

i

Lausanne

k Bern

ICC Module Computation Lesson 2 – Computation & Algorithms II

41

Dynamic Programming – Floyd

k … the index of the city we
allowed to visit (in addition to
source and target city)

i … the index of the source city
j… the index of the target city

ICC Module Computation Lesson 2 – Computation & Algorithms II

42

Floyd’s Algorithm: Example
Lausanne Biel Bern Zürich

0 133 58 ∞
133 0 45 38
58 45 0 102
∞ 38 102 0

k=1(Lausanne): Going throw Lausanne does not give any improvements.
k=2(Biel): Going throw Biel improves the distances
• from Lausanne to Zürich and
• from Zürich to Bern

Zürich

3

1

Lausanne
(f ic t i t ious data)

4

Bern

102

58

45

38

133

Biel

2

D(i,j)
Lausanne
Biel
Bern
Zürich

ICC Module Computation Lesson 2 – Computation & Algorithms II

43

Floyd’s Algorithm: Example
Lausanne Biel Bern Zürich

0 133 58 ∞
133 0 45 38
58 45 0 102
∞ 38 102 0

D2 =

Zürich

3

1

Lausanne
(f ic t i t ious data)

4

Bern

102

58

45

38

133
Lausanne Biel Bern Zürich

0
133 0
58 45 0

171 38 83 0

Biel

2

k=1(Lausanne): Going throw Lausanne does not give any improvements.
k=2(Biel): Going throw Biel improves the distances
• from Lausanne to Zürich and
• from Zürich to Bern

D0 = D 1
Lausanne
Biel
Bern
Zürich

ICC Module Computation Lesson 2 – Computation & Algorithms II

44

Lausanne Biel Bern Zürich
0

133 0
58 45 0

171 38 83 0

Floyd’s Algorithm: Example

D3 =

Lausanne Biel Bern Zürich
0

103 0
58 45 0

141 38 83 0

k=3 (Bern): going throw Bern improves the distances
• from Lausanne to Biel and
• from Zürich to Lausanne
K=4 (Zürich): going throw Zürich does not give any improvements

D2 =

Note: it also works for asymmetric
graphs (directed graphs)

Zürich

3

1

Lausanne
(f ic t i t ious data)

4

Bern

102

58

45

38

133

Biel

2

ICC Module Computation Lesson 2 – Computation & Algorithms II

45

A. Θ(n2)
B. Θ(n3)
C. Θ(n4)
D. Θ(n5)

Complexity?

ICC Module Computation Lesson 2 – Computation & Algorithms II

46

§ There is no miracle recipe to find an algorithm,
but there exist big families of resolution
strategies:
• decompose (e.g., “recursion”): try to solve the

problem by decomposing it in simpler (or smaller)
instances

• decompose and regroup (e.g., “dynamic
programming”): memorize intermediate computations
to avoid executing them several times

Conclusion

