Information, Computation, and Communication

Algorithm 2

What is the complexity of this algorithm?

Algorithm2

input : a list L with n numbers

output: a number s

$$s \longleftarrow 0$$
 $i \longleftarrow 1$
 $\textbf{while } i < n$
 $\textbf{for } j \text{ from } 1 \text{ to } n$
 $\textbf{|} s \longleftarrow s + L[j]$
 $i \longleftarrow 2 \cdot i$

return: s

- How many iterations do the for and the while loops have?
- The for loop runs from 1 to n → n iterations/repetitions
- The while loop repeats if i < n. What is the value of i after iteration k?
- i is multiplied by 2 in every iteration → the value of i after iteration k is 2^k
- So, after which iteration is $2^k \ge n$?
- If $k \ge \log_2(n)$
- So, the while loop has log₂(n) iterations

 $\Theta(n \cdot \log(n))$

Topics

- Sorting (selection sort)
- Recursion
 - Complexity of a recursive algorithm
 - Binary Search (« Recherche dichotomique »)
 - Merge Sort
 - Fibonacci numbers
 - Dynamic Programming
- (Application of Binary Search)

Sorting

- There are many different sorting algorithms (selection sort, insertion sort, bubble sort, merge sort ..)
- Input: a list L of elements, e.g., integers
- Output a sorted version of L

Selection Sort

- Divide the list into two parts:
 - A sorted part (on the left, initially empty)
 - An unsorted part (on the right, initially the whole list)
- Find the smallest element in the unsorted part and put it at the end of the sorted part by swapping two elements, e.g., {5,4,6,1,2,7,8,3}
- After 1st iteration: {1,4,6,5,2,7,8,3}
- After 2nd iteration: {1,2,6,5,4,7,8,3}
- After 3rd iteration: {1,2,3,5,4,7,8,6}

Selection Sort

- Divide the problem:
 - Find the smallest element in a list
 - Put the element in the right place by swapping two elements

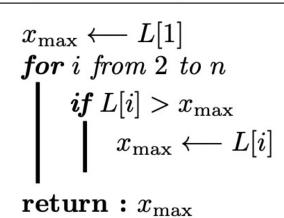
Recall Maximal Value from Last Week

Maximal Value

input : (non-empty) liste L with n integers

output: the largest value in the list

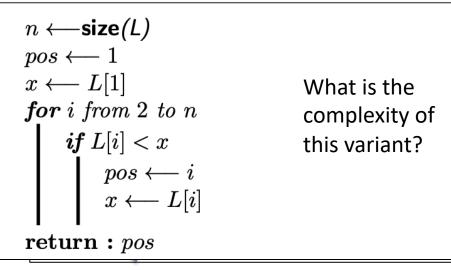
Let's create a variant to find the position of the minimal value:



find_minimum_position (L)

input: a non-empty list L of numbers

output: the position of the smallest number in L



We will use **size(L)** to refer to the length of the list L. We assume **size(L)** is in **O(1)**.

Swap Two Elements in a List

What is the complexity of this algorithm?

Selection Sort

$\operatorname{sort}(\mathbf{L})$			
$input: a \ list \ L \ of \ numbers$			
$output: a \ sorted \ version \ of \ L$	Line	Costs	Repet.
$n \leftarrow size(L)$	1	~ 1	1
for i from 1 to n	2	~ 1	n
$index \leftarrow find_minimum_position(L(i:n))$	3	~ n	n
swap(L, i, index)	4	~ 1	n
$\mathbf{return}: L$	5	~ 1	1

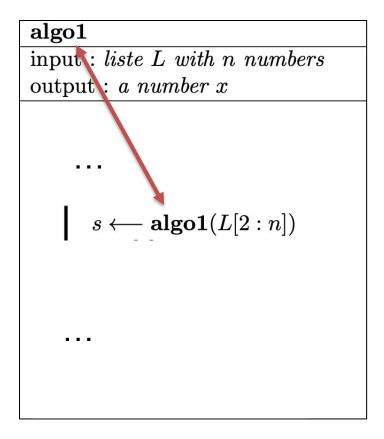
Sum over the lines:
$$\sum_{i=1}^{5} c(i) \cdot r(i) = 1 + 2n + n^2 + 1 = \Theta(n^2)$$

Sum over iterations of line 3:
$$\sum_{i=1}^{n} (n+1-i) = \sum_{i=1}^{n} n + \sum_{i=1}^{n} 1 - \sum_{i=1}^{n} i = n^2 + n - \frac{n \cdot (n+1)}{2} = \Theta(n^2)$$

Size of the list in iteration i

Recursive Algorithm

An algorithm that calls itself



Your Tasks

- Understand a recursive algorithm
- Analyze the complexity of a recursive algorithm
- Write recursive algorithm

Understanding a Recurive Algorithm

algo1

 ${\bf input}: \textit{liste L with n numbers}$

output: a number x

What is the output if L={5,8,6,10,3}?

Understanding a Recurive Algorithm

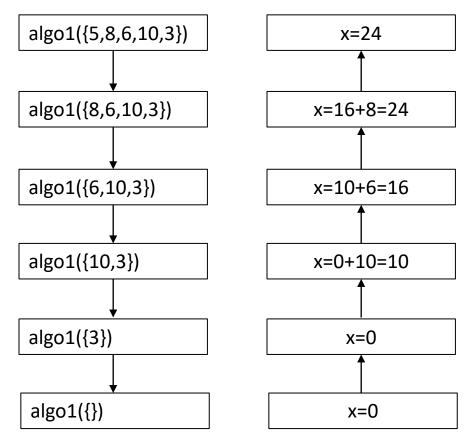
algo1

input : $liste\ L\ with\ n\ numbers$

output: a number x

What is the output if L={5,8,6,10,3}?

Function call tree:



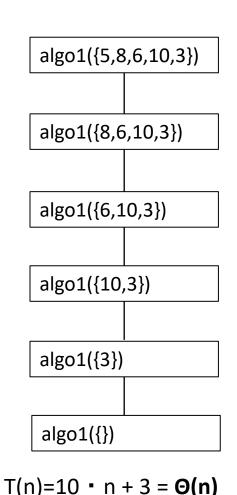
Complexity

algo1

input: liste L with n numbers

output : a number x

$$\begin{array}{c|c} \textbf{if } n = 0 \\ & x \longleftarrow 0 \\ \\ \textbf{else} \\ & s \longleftarrow \mathbf{algo1}(L[2:n]) \\ & \textbf{if } L[1] \mod 2 = 0 \\ & x \longleftarrow s + L[1] \\ & \textbf{else} \\ & x \longleftarrow s \\ \\ & \mathbf{return:} x \end{array}$$



T(n)=T(n-1)+10T(0)=3 14

Height? Cost?

 ~ 10

n+1 nodes • const. cost per node = $n+1 = \Theta(n)$

Writing a Recursive Algorithm

- Find the largest number in a list
 - Input: a list L with n numbers
 - Output: the largest number in this list
- Idea of recursion:
 - Use a solution of a smaller problem (a shorter list)
- You need to answer two questions:
 - 1. Assume we are given the largest element in the list L[2:n] (list of length n-1), how would we compute the largest element of the list L[1:n]?
 - 2. What is the termination condition? What is the largest element of a list of size 1?

Question 1: from n-1 to n

rec_max

```
input : (non-empty) liste L with n numbers
```

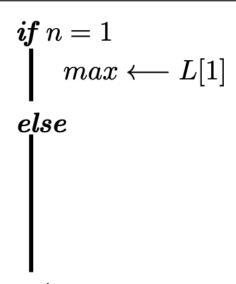
output: the maximal number in the list

return: max

Question 2: Termination

rec_max

input: (non-empty) liste L with n numbers
output: the maximal number in the list



return: max

Find Max (Recursively)

rec_max

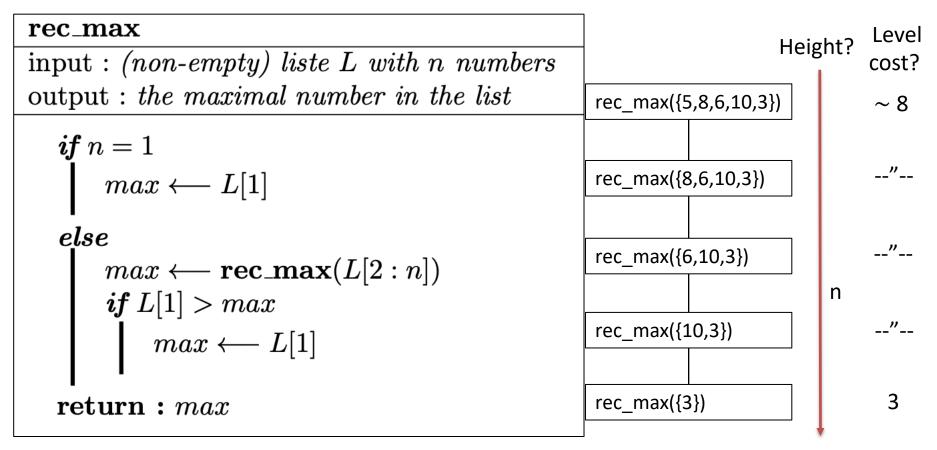
input: (non-empty) liste L with n numbers output: the maximal number in the list

```
egin{aligned} & \emph{if } n = 1 \\ & max \longleftarrow L[1] \end{aligned} \ & \emph{else} \ & max \longleftarrow \mathbf{rec\_max}(L[2:n]) \ & \emph{if } L[1] > max \\ & & max \longleftarrow L[1] \end{aligned} \mathbf{return:} \ max
```

What is the complexity of this algorithm?

- A. $\Theta(\log(n))$
- B. $\Theta(n)$
- C. $\Theta(n^2)$
- D. $\Theta(2^n)$

Complexity



Sum of costs over all levels: $T(n)=8 \cdot (n-1) + 3 = \Theta(n)$

Binary Search – Recherche dichotomique

- Find an element in a sorted list
 - Input: a sorted list L of numbers and a number x
 - Output: true, if x is in L, otherwise false

Idea:

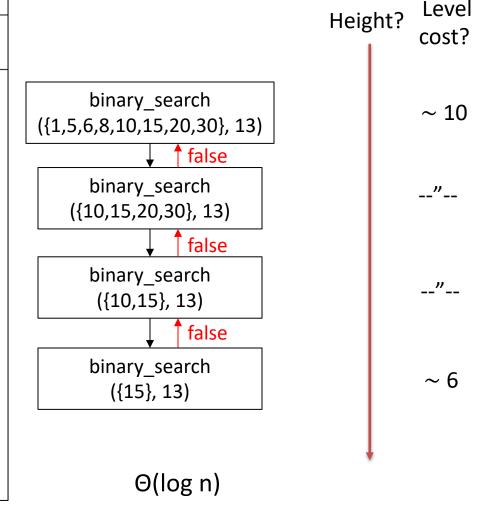
- Look at the number y in the middle of L
- If x <= y, repeat the search in the left part of the list
- If x > y, repeat the search in the right part of the list
- Termination: x found or list empty.

Binary Search

$binary_search(L,x)$

input: a sorted list L of numbers and a number x output : true, if $x \in L$, otherwise false

```
n \leftarrow \operatorname{size}(L)
if n = 0
   f \longleftarrow false
if n = 1
    f \longleftarrow (L[1] = x)
if n > 1
     m \longleftarrow \lfloor n/2 \rfloor
     if x \leq L[m]
          f \longleftarrow \mathsf{binary\_search}(L[1:m])
      else f \leftarrow binary_search(L[m+1:n])
return: f
```



Application of Binary Search: Inspection of Exam Results

- About 300 copies sorted by SCIPER number
- How many copies do you have to look at (in the worst case) in order to find your copy?

Application of Binary Search: Inspection of Exam Results

- Roughly 9 copies:
 - 1. Split the pile into two piles of about half the size (~150 copies)
 - 2. Check the SCIPER number of the copy on the top of the second pile:

 - a) if it is your copy, you are doneb) if it is not your copy and if your SCIPER number is larger than the one of the copy continue your search in the second pile by going to Step 1,
 - otherwise continue the search in the first pile by going to Step 1
- Approx. sizes of search piles: 300, 150, 75, 38, 19, 10, 5, 3, 2, 1

- Idea:
 - Split the list in half
 - Sort each half
 - Merge the two sorted halfs
- Decompose the problem
 - Split list
 - Merge two sorted list

Recursive Merge

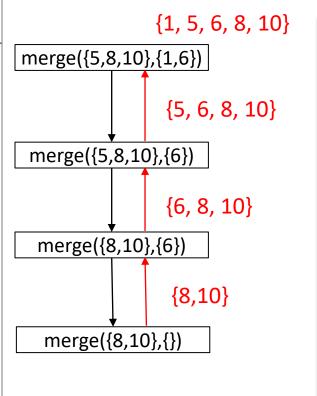
```
merge
input: two sorted lists L and R
output: a sorted list with all the elements in L and R
   n_L \longleftarrow \mathbf{size}(L)
   n_R \longleftarrow \mathbf{size}(R)
   if n_L = 0
        return R
   if n_R = 0
        return L
   if L[1] < R[1]
        M \longleftarrow \mathbf{merge}(L[2:n_L], R)
        M \leftarrow L[1]: M //prepend L[1] to M
   else
       M \longleftarrow \mathbf{merge}(L, R[2:n_L])
M \longleftarrow R[1]:M)
   return M
```

Merge

```
merge
input: two sorted lists L and R
output: a sorted list with all the elements in L and R
  n_L \longleftarrow \mathbf{size}(L)
  n_R \longleftarrow \mathbf{size}(R)
  if n_L = 0
       return R
  if n_R = 0
       return L
  if L[1] < R[1]
       M \longleftarrow \mathbf{merge}(L[2:n_L], R)
       M \leftarrow L[1]: M //prepend L[1] to M
   else
       M \longleftarrow \mathbf{merge}(L, R[2:n_L])
       M \longleftarrow R[1]:M
  return M
```

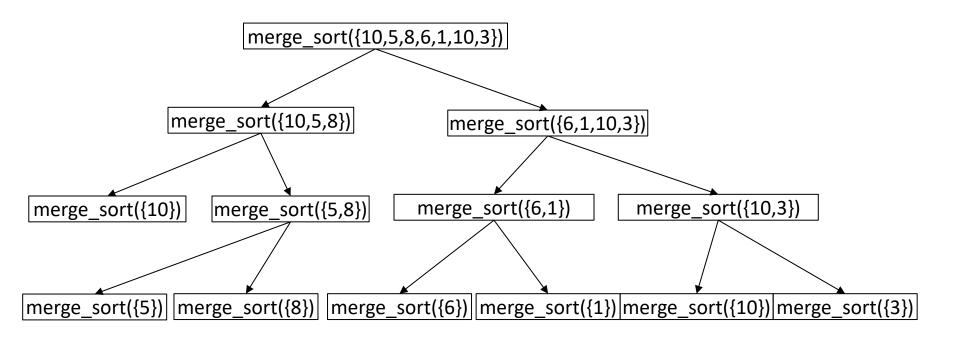
Exercise: Write a non-recursive version

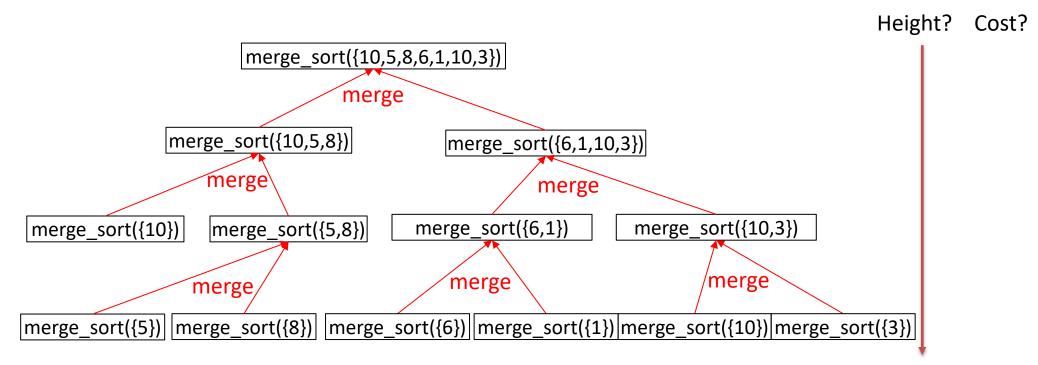
 $n_L + n_R$



One element removed at every call

$$\Theta(n_L + n_R)$$





- Height: how often can we divide n by 2? The height is log n.
- How many nodes? $\sum_{i=0}^{n} 2^{i} = 2^{h+1} 1 = 2 \cdot 2^{\log n} 1 = 2n 1$
- Costs vary per node but we can bound the costs per level.
 At each level, we merge at most n elements.

Recursion or Not?

The recursive solution is not always the only solution and rarely the most efficient...

...but it is sometimes much simpler and more practical to implement!

 Examples: sorting, processing of recursive data structures (e.g. trees, graphs, ...), ...

Fibonacci Numbers (Recursive Version)

$$F(n) = F(n-1) + F(n-2)$$
 for $n > 1$
 $F(0) = 0$ and $F(1) = 1$

Fibonacci

input : a integer n

output: the Fibonacci number of n

$$if n = 0$$

$$f \leftarrow 0$$

$$if n = 1$$

$$f \leftarrow 1$$

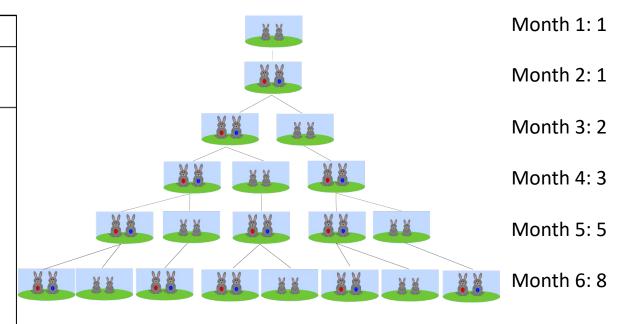
$$if n > 1$$

$$p \leftarrow Fibonacci(n - 1)$$

$$q \leftarrow Fibonacci(n - 2)$$

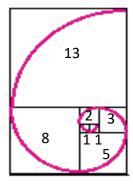
$$f \leftarrow p + q$$

$$return : f$$



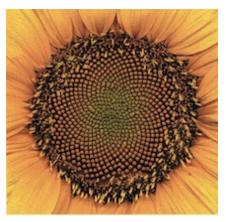
Named after Leonardo Fibonacci (1175-1250)

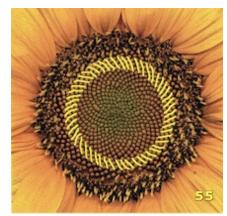
Fibonacci Numbers in Nature

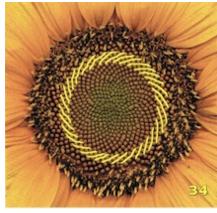


The lengths of the squares describing naturally appear spirals are often Fibonacci numbers.

Number of ancestors of a drone (a male honey bee) is a sum of Fibonacci number.

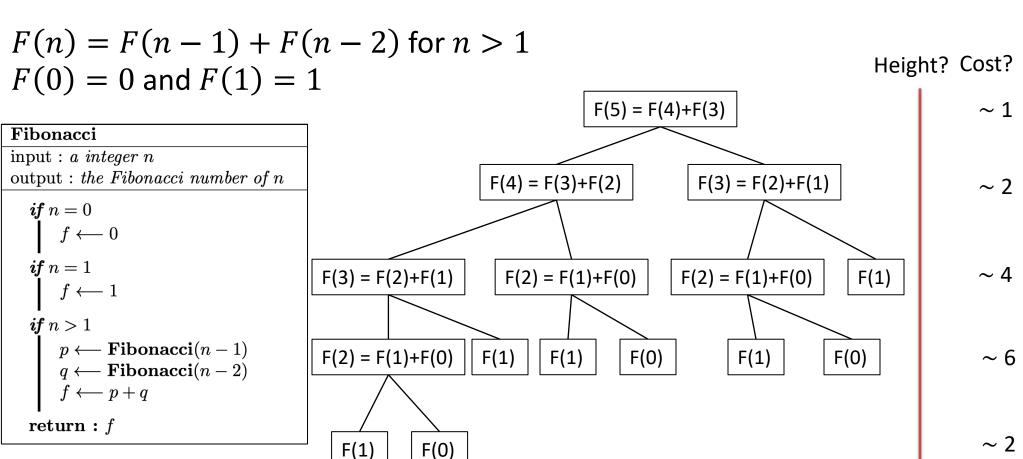






In these pictures there are 55 curves of seeds spiraling to the left as you go outwards and 34 spirals of seeds spiraling to the right. A little further towards the center you can count 34 spirals to the left and 21 spirals to the right. These pairs of numbers are (almost always) neighbors in the Fibonacci series.

Fibonacci Recursive



In each node in this tree, we have to perform a constant number of instructions.

- 1. How high is the tree? The height is n.
- 2. How many nodes (function calls) are in this tree? $<\sum_{i=0}^{n} 2^i = 2^{n+1} 1 = O(2^n)$ upper bound $>\sum_{i=0}^{\frac{n-1}{2}} 2^i = 2^{\frac{n+1}{2}} 1 = \Omega(2^{\frac{n}{2}})$ lower bound

Fibonacci Recursive

Complexity F(n)?Exponential in n

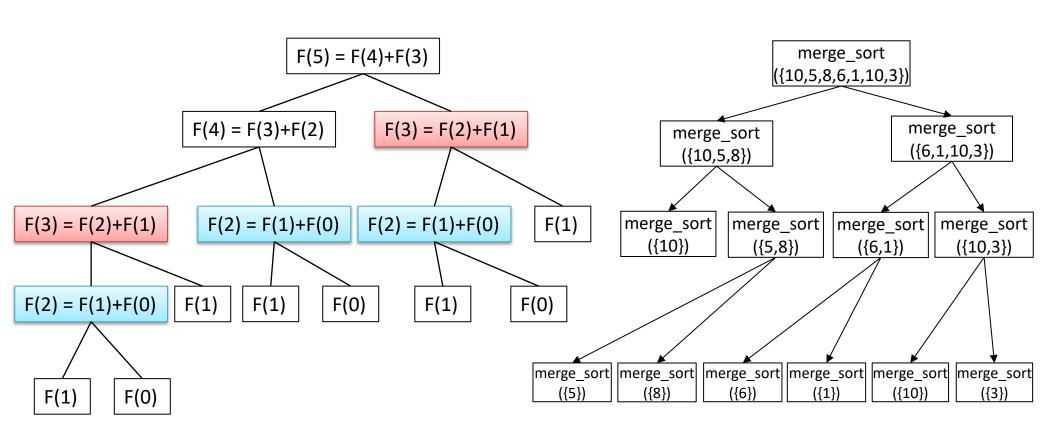
Is there a better solution?

Idea: do not perform the same calculation many times but store the already calculated value for later use

Dynamic Programming

- Dynamic programming is a strategy to solve problems.
 - It applies to problems for which we can find an optimal solution by breaking it down into smaller optimal overlapping sub-problems in a recursive manner.
 - To solve such problems efficiently we memorize the solutions of sub-problems to avoid re-computation.
 (This technique is called memoization.)
- If the sub-problems are not overlapping the solving strategy is called "divide and conquer" (e.g., in merge sort)

Overlapping vs Non Overlapping



Fibonacci with Memoization (Version 1)

- How to avoid recomputation?
- Idea: store all the computed results and check if the result has been already computed before computing it.

```
int fibonacci1 (int n, map<int, int>& cache) {
                                                                            F(5) = F(4) + F(3)
    if (n == 0) return 0;
    if (n == 1) return 1;
                                                                  F(4) = F(3) + F(2)
                                                                                     F(3) = cache(3)
    if (cache.contains(n)) return cache.at(n);
    int p = fibonacci1(n - 1, cache);
    int q = fibonacci1(n - 2, cache);
                                                  F(3) = F(2) + F(1)
                                                                    F(2) = cache(2)
    cache.insert_or_assign(n, p + q);
    return p + q;
                                                  F(2) = F(1) + F(0)
                                                                 F(1)
int main() {
                                                    F(1)
                                                            F(0)
    map<int,int> cache;
    cout << "Computing with memoization version 1: " << fibonacci1(45, cache) << endl;</pre>
```

Fibonacci with Memoization (Version 2)

Memorize the last two computations (x and y)

Fibonacci input : a integer n > 1output: the Fibonacci number of n $//f_{n-2}$ $x \leftarrow 0$ $//f_{n-1}$ $y \leftarrow 1$ for i from 2 to n $z \leftarrow x + y \qquad //f_n \leftarrow f_{n-2} + f_{n-1}$ $x \leftarrow y \qquad //f_{n-2} \leftarrow f_{n-1}$ $y \leftarrow z \qquad //f_{n-1} \leftarrow f_n$ return: z

Complexity?

Fibonacci

input : a integer n > 1

output: the Fibonacci number of n

$$x \longleftarrow 0 \qquad //f_{n-2}$$

$$y \longleftarrow 1 \qquad //f_{n-1}$$

$$for \ i \ from \ 2 \ to \ n$$

$$z \longleftarrow x + y \qquad //f_n \longleftarrow f_{n-2} + f_{n-1}$$

$$x \longleftarrow y \qquad //f_{n-2} \longleftarrow f_{n-1}$$

$$y \longleftarrow z \qquad //f_{n-1} \longleftarrow f_n$$

return: z

A. $\Theta(\log n)$

B. $\Theta(n)$

C. $\Theta(n^2)$

D. $\Theta(2^n)$

Dynamic Programming – Floyd

Computation of the **shortest path**, for example between all the train stations of the CFF network.

Given a graph G with vertices 1,2,..,N, consider a function called $D_k(i,j)$ that returns the shortest path from i to j using only vertices

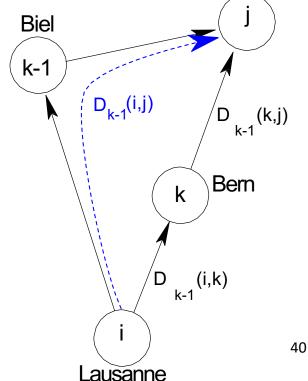
Zürich from 1 to k as **intermediate points**.

Key Idea of the algorithm:

The shortest path to go from i to j (e.g., Lausanne to Zürich) is the shortest path among:

- 1. The shortest known path from Lausanne to Zürich (using nodes 1 to k-1), and
- 2. The path from Lausanne to Zürich by traversing a city not known yet (e.g., Bern)

$$D_k(i, j) = \min \{D_{k-1}(i, j), D_{k-1}(i, k) + D_{k-1}(k, j)\}$$



Dynamic Programming – Floyd

ShortestPath

return: D

input: a table C(i,j) with the cost of taking the direct road between city i and j; the cost is ∞ if there is no direct road between city i and j and the cost is 0 if i = j; there are a total of n cities output: a table D(i,j) with the shortest distance between n cities

```
//Initialisation
for i from 1 to n

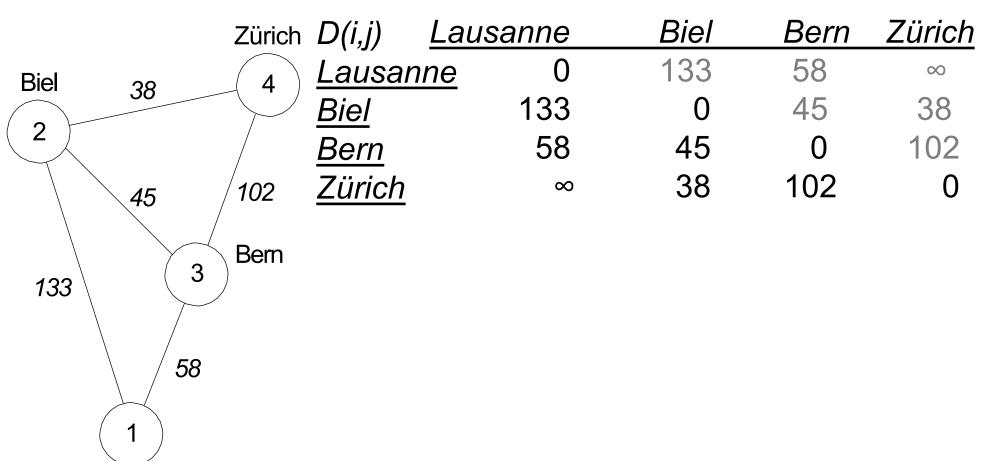
| for j from 1 to n
| D(i,j) \longleftarrow C(i,j)

//Update
for k from 1 to n
| for i from 1 to n
| if D(i,j) > D(i,k) + D(k,j)
| D(i,j) \longleftarrow D(i,k) + D(k,j)
```

i ... the index of the source city j... the index of the target city

k ... the index of the city we allowed to visit (in addition to source and target city)

Floyd's Algorithm: Example



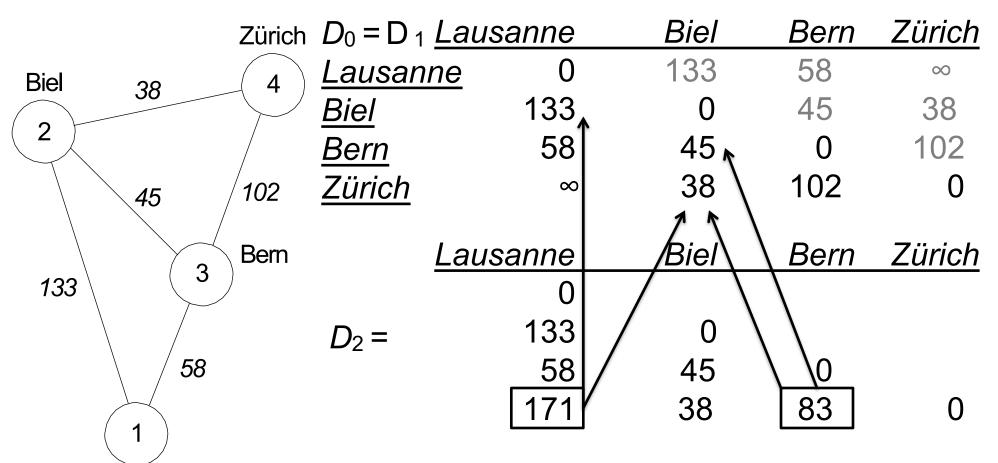
Lausanne

(fictitious data)

k=1(Lausanne): Going throw Lausanne does not give any improvements. k=2(Biel): Going throw Biel improves the distances

- from Lausanne to Zürich and
- from Zürich to Bern

Floyd's Algorithm: Example



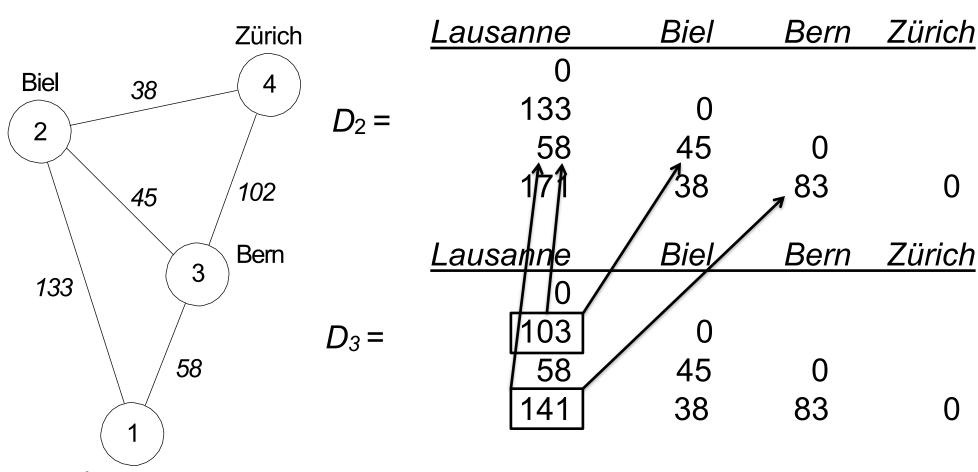
(fictitious data)

Lausanne

k=1(Lausanne): Going throw Lausanne does not give any improvements. k=2(Biel): Going throw Biel improves the distances

- from Lausanne to Zürich and
- from Zürich to Bern

Floyd's Algorithm: Example



(fictitious data)

Lausanne

Note: it also works for asymmetric • graphs (directed graphs) K

k=3 (Bern): going throw Bern improves the distances

- from Lausanne to Biel and
- from Zürich to Lausanne

K=4 (Zürich): going throw Zürich does not give any improvements

Complexity?

ShortestPath

input: a table C(i,j) with the cost of taking the direct road between city i and j; the cost is ∞ if there is no direct road between city i and j and the cost is 0 if i = j; there are a total of n cities output: a table D(i,j) with the shortest distance between n cities

```
//Initialisation

for i from 1 to n

D(i,j) \leftarrow C(i,j)
//Update
for k from 1 to n

for j from 1 to n

D(i,j) > D(i,k) + D(k,j)
D(i,j) \leftarrow D(i,k) + D(k,j)
return: D
```

- A. $\Theta(n^2)$
- B. $\Theta(n^3)$
- C. $\Theta(n^4)$
- D. $\Theta(n^5)$

Conclusion

- There is no miracle recipe to find an algorithm, but there exist big families of resolution strategies:
 - decompose (e.g., "recursion"): try to solve the problem by decomposing it in simpler (or smaller) instances
 - decompose and regroup (e.g., "dynamic programming"): memorize intermediate computations to avoid executing them several times