ICC Module Computation: Computation & Algorithms |

Information, Computation, and Communication

Algorithm 1

ICC Module Computation: Computation & Algorithms |

What is an Algorithm?

" An algorithm is an effective method, expressed as a

finite list of well-defined instructions for calculating
a function.

[Wikipedia]

" Algorithms exist well before computers:
already in ancient history (e.g., Egyptian
division, Euclid’s algorithm for greatest-
common-divisor)

ICC Module Computation: Computation & Algorithms |

Shaping the Future

= “Algorithm’ is arguably the single most important
concept in our world. If we want to understand our
life and our future, we should make every effort to
understand what an algorithm is, and how

algorithms are connected with emotions.”

Yuval Noah Harari, Homo Deus: A Brief History of Tomorrow

ICC Module Computation: Computation & Algorithms |

Examples
= Binary addition
" Binary to decimal conversion and vice versa
" Procedure to compute the 2s complement
= Solving a quadratic equation (e.g., 3x% + 5x + 2)
= Sorting a list of elements

= Searching for an element in a list
= |dentifying gene in a DNA-sequence
= Pagerank/Edgerank

ICC Module Computation: Computation & Algorithms |

How to describe an Algorithm? Pseudo-Code

= Name and description of inputs and output

Valeur minimale Minimal Value Cf. document pSGUdO'
entrée : liste L (non-vide) de nombres entiers input : (non-empty) liste L of integers code on Moodle
sortie : la valeur minimale de la liste output : the smallest value in the list

(instructions) (instructions)

= Variables (Place holder) to refer to a single element or a list of
elements

= Access an element in a list (parenthése/crochet): L(1),L[1],A[4]

it . . We start counting at 1, i.e.
| -) ’
Access a sub-list: L(1'4)’ A[5'6] L(1) is the first element in the list.

= Assignments (Affectation) : z«— 3 zmin +— L(%)

* Mathematical operators: +,—,-,/, mod ,<,<,=,#,>,>,|]
x > 2 x +— L(1)+ 2

= Reference to another algorithm (sous-algorithme):
n <— taille(L) n <— algorithm1 (L, n)

L' +— tri par insertion(L) sortedL <— sort(L,n)

ICC Module Computation: Computation & Algorithms |

Pseudo-Code (Cnt.)

= Control structures (if, for, while)

Si condition if condition
instructions instructions
Tests .
Sinon else
r instructions instructions
Pour i allant de 1 an for i from 1 to n
instructions T instructions
L Pour i allant de1 an de 2 en 2 for 7 from 1 to n in increments of 2
00 p S instructions T instructions
Pour i allant de n a 1 en descendant for 7 from n to 1 going down
instructions | instructions
Tant que condition hile condition
Conditional Loo ps | instructions ‘1 instructions

" Termination statement:

Sortir : z
return : x

ICC Module Computation: Computation & Algorithms |

Pseudo-Code (Lists)

" Create an empty list: A=empty or A={}
= Create a list with some element: A ={2,3,4}

= Add an element to the list: A.append(2) or “append 2
to A”

= Overwrite an element in the list: A(1) ¢ 3

= An element of the list can be anything! Even
another list, e.g., A={{2,3,4}, {1,2,3}, {3,4}}, or a list

of list, e.g., B={{{1,2},{2,3}, {3} }, { {1}, {2,3}} } }
* A(1) gives the first element = {2,3,4}
* A(1)(3) takes the 1st element and takes the 3rd element =4

7

ICC Module Computation: Computation & Algorithms |

Your Tasks

1. Understand an algorithm

2. Write an algorithm
3. Analyze the correctness and complexity of an
algorithm

ICC Module Computation: Computation & Algorithms |

Task 1: Understanding an Algorithm

What computation does
this algorithm perform for
L={3,6,2,1, 10, 9}? (n=6)

Algorithm 1
input : (non-empty) liste L with n integers

output : an integer Line1,4 | Line?2

g || L0 > Xnax

Tax ¢— L[1]
for i from 2 ton :

if L[Z] > Tmax 6 2 6 > 3 (true)
Tomax — L[] 6 3 2 > 6 (false)
6 4 1> 6 (false)
return : Tpax 10 5 10 > 6 (true)
10 6 9 > 10 (false)
It computes the maximum of the list, 10 return

i.e., it returns 10

ICC Module Computation: Computation & Algorithms |

Another Example

What is the output of algol if L=1{3, 6, 2, 1, 10, 9}?

Algorithm 2 Line1,4 | Line 2 Line 3
input : liste L with n numbers
output : a number x 0
s<— 0 0 1 s 3 even?
fori from 1 ton 1 5 s 6 even?
of L[z] mod 2 =0 2 3 Is 2 even?
s¢— s+l 2 4 s 1 even?
return : s 3 5 Is 10 even?
3 6 Is 9 even?
3 return

Output=3
The algorithm counts the even numbers.

ICC Module Computation: Computation & Algorithms |

Task 2: Writing an Algorithm

" Problem: computing the GC-Content in a given DNA seq.

= GC-content (or guanine-cytosine content) is the
percentage of bases in a DNA (or RNA) molecule that are
either guanine (G) or cytosine (C). Recall that a strand of
DNA is a sequence of A (adenine), T (thymine), C, and G’s.
(RNA has U (uracil) instead of T (thymine)).

= E.g,
GC-content of ACCGC =4/5=0.8
GC-content of ATACTAAA = 1/8=0.125

= Basic instructions needed: access element in a list,
compare the element in a list to G/C, addition and division

11

ICC Module Computation: Computation & Algorithms |

GC-Content

GC-Content

input : liste L with n DNA bases
output : percentage of G and C

countGC +— 0
fori from 1 ton

if L[i] =G or L[i| =C
countGC <— countGC + 1

return : countGC/n

12

ICC Module Computation: Computation & Algorithms |

Find Stop Codon

= A codon is a sequence of three DNA or RNA
nucleotides that corresponds to a specific amino acid
or a stop signal during protein synthesis.

= Of the 64 codons, 61 represent amino acids, and three
are stop signals. For example, the RNA codon UAA is a
stop codon.

Amino acids

7\

Met Thr Asp GIn Pro GIn Ala Glu Leu Ala Phe Thr Tyr Asp Ala Pro

mRNA | | | | | | | | | | | | | | | |
AUGACGGAUCAG GCAAGCGGAAUUGGCGUUUACGUACGAUGCGCCG |UAA|

| T

Codon2
Stop
Codon1 Codon3 Codon

" Problem: Given a RNA sequence of length n, find the
start position of a UAA stop codon.

13

ICC Module Computation: Computation & Algorithms |

FindUAACodon

input : liste L with n RNA bases (containing at least one UAA Codon)
output : position in the list at which a UAA Codon starts

pos <— 1
found «— 7 Amino acids
while pos <=n and found # “UAA” /\
if found = Met Thr Asp GIn Pro GIn Ala Glu Leu Ala Phe Thr Tyr Asp Ala Pro
: _ | | | | | | | | | | | | | | | |
if Llpos] =U RN R UGACGGAUCAGCCGCAAGCGGAAUUGGCGUUUACGUAC GAUGCGCCG [UAA|
found <— “U” I A ._|_4
pos <— pos +1 ‘ Codon2 Stop
Codon1 Codon3
else . Codon
pos <— pos + 3 '@l nd S‘PDP COC{OM (L)
if found = “U” Input « list L with n bags
found <— “UA” POS < 1
pos <— pos + 1 '@ouko(é'o
g
else .
found <— “” \/\/[/Il[e_ C POs £ h-2 X Cound =O)
POS <— pos + 2 € Lf'posipas*Qj ='{U/A//‘v3>
if found = “UA” | foud « 1
if Lpos] = A else
found +— “UAA” | pose pased
POS <— pos — 2 .
l £ (found =0)
else
found «—] DPOS & -1
pos <— pos + 1 rC*k Urn ?OJ
return : pos 14

ICC Module Computation: Computation & Algorithms |

Task 3: Analysis of an Algorithm

= Key Questions about an Algorithm

e |s it correct?
e |s it efficient?

15

ICC Module Computation: Computation & Algorithms |

Correctness

1. Does the algorithm terminate for all input?

2. Does it give us the result we aim for?
* |nthe common case
* In corner cases (e.g., empty list, value 0)
* |nall cases

Strategies to analyze correctness:

* Testing, i.e., “run” (with a computer or by hand)
the algorithm with different inputs and compare
the output with the expected output

 Mathematical reasoning (CS-550)

16

ICC Module Computation: Computation & Algorithms |

Be Aware of the Corner Cases!

= What happens if n=07?

GC-Content

input : liste L with n DNA bases
output : percentage of G and C

countGC +— 0

for i from 1 ton
if L[i| =G or L[i] =C
countGC' <— countGC + 1

return : countGC/n

CoONOUIAWN -

~/src > ./gc_content
0.375
-2147483648

#include <iostre
using namespace std;

Eldouble gc_content(string dna) {
int n(dna.length());

double countGC(Q);

E for (int i = 0; i < n; i++) {

= if (dnali] == || dnalil
countGC = countGC + 1;

i }
P }
return countGC/n;
‘I
int main()

cout << gc_content("GCATATGCAATT
cout << gc_content("") << endl;

|

i) 1

FAGC") << endl;

17

ICC Module Computation: Computation & Algorithms |

Complexity of an Algorithm

= How much time and space (memory) does it need? We focus on time
complexity. (Number of elementary instructions)

" |n general the complexity is always given in terms of the total input
size, e.g., if an algorithm has two inputs X, y, the complexity is a
function of the size of x and y. We focus on one input.

= Actually running time can depend a lot on specific input: best, average
worst-case behavior. We focus on worst-case behavior.

= Finally, for small input values usually all algorithms are fast. We are
interested in the complexity on large inputs, the complexity when the
size of the input goes towards infinity, called the
asymptotic complexity (Big Theta or Big O notation)

Cf. document about complexity on Moodle

18

ICC Module Computation: Computation & Algorithms |

Elementary Instructions

" The runtime of an algorithm is computed in terms of
instructions that can be performed in constant time.
We assume that the following instructions can be
performed in constant time:

* Assignments (Affectation)

* Mathematical operators (+,-,*,/,%, mod) using numbers with
a fixed number of bits (e.g., 32 or 64)

 Comparison operators (>, >=, <, <=, ==

* Bitwise operator (&, |, and, or,..)

e Access an element (e.g., value or sub-list) in a list

" Question to answer: How many of these instructions
does an algorithm use (or “read”)?

19

ICC Module Computation: Computation & Algorithms |

Computing the Time Complexity

We aim to estimate how many basic instructions an
algorithm executes in terms of its input size.

Compute the number of instructions per line
Compute the number of repetitions per line
Sum costs of all lines

= W

Approximate functions

20

ICC Module Computation: Computation & Algorithms |

Complexity: Step 1

= Compute the number of instructions per line

GC-Content
input : liste L with n DNA bases

countGC +— 0 1 assignment
for i from 1 ton

2 1 assignments, 1 comparison, (1 addition) 3

sz[z] =G or L[Z] =C 3 2 list access, 3 comparison, 1 bitwise op. 6
countGC <— countGC + 1 . _

4 1 addition, 1 assignment 2

return : countGC/n 5 1 division, 1 return 2

The precise costs per line (e.g., value 2, 3 or 5) are not important
because we will approximate the overall complexity later.
Important is to know if the cost is constant or not,

e.g., a line in which another algorithm is called.

ICC Module Computation: Computation & Algorithms |

Complexity: Step 2

= Compute how many times a line is execute or “read”
(in the worst case)

GC-Content
input : liste L with n DNA bases

1 1 1

countGC «+— 0
for i from 1 ton

if L[i| =G or L[i] =C
I countGC <— countGC + 1

3
6
2
2

= - =) -

2
3
4
5

return : countGC/n

ICC Module Computation: Computation & Algorithms |

Complexity: Step 3

plot 11n+3 0 t0 10000
(@)
1 1 1)
g 100000
o
2 3 - 80000
c
3 6 n ,_: 60000
o
4 2 n — 10000
()]
5 2 1 g 20000
)
= 2000 1000 6000 8000 10000

Size of the input

= Sum the costs = repetitions over all lines:
5

Ec(i)-r(i)=1+3n+6n+2n+2=11n+3
.=1 23

ICC Module Computation: Computation & Algorithms |

Complexity: Step 4

" We don’t care about the precise number of instructions
but the general behavior.

" [tisimportant to know how complexity evolves according
to the input size.

= We aim to know if the number of instructions (aka
runtime) is linear, quadratic, ... or exponential in terms of
the size of the input.

= \We use the Landau notations

(also called Big O, Big Omega, or Big Theta notations)
to obtain this information.

24

ICC Module Computation: Computation & Algorithms |

Landau Notation: O(...)

Big O notation is a mathematical notation that describes
the limiting behavior of a function when the argument tends
towards infinity.

For two functions f and g from R to R,

f €0(g) (or f =0(g))ifandonly if
3c>03aAngaVn>ny: | f(n)| <c-gn)

In this case, we say that the function f is in “Big O” of g.
This means that f grows asymptotically no faster than g.
The function ¢ - g is an asymptotic upper bound for f.

25

ICC Module Computation: Computation & Algorithms |

14+

124

104

Example Big O

c-fo(n) /

/
1]

/

For two functions f and g from R to R,

f €0(g) (or f =0(g))ifand only if
dc>03AngvVn>ny: | f(n) <c-gn)

fi(n) € O(fz(n))
fi(n) because there exists a c and n,
7 such that f;(n) < c - f,(n)

v

26

ICC Module Computation: Computation & Algorithms |

Landau Notation: Q (...)

Big Q) notation is a mathematical notation that describes
the limiting behavior of a function when the argument tends
towards infinity.

For two functions f and g from R to R,

f €Q(g) (or f =Q(g))ifand only if
J3c>03aAngaVn>ny:ic-gn) <|fn)|

In this case, we say that the function f is in “Big Omega” of g.
This means that f grows asymptotically not slower than g.
The function ¢ - g is an asymptotic lower bound for f.

27

ICC Module Computation: Computation & Algorithms |

14+

124

104

Example Big Omega

c-fi(n)

For two functions f and g from R to R,

f €Q(g) (or f =Q(g))if and only if
dc>03AngVn>ny:ic-gn) <|f(n)|

fn) € Q(f1(n))
because there exists a c and n,
suchthatc- fi(n) < f,(n)

28

ICC Module Computation: Computation & Algorithms |

Landau Notation: O(...)

Big Theta notation is a mathematical notation that describes
the limiting behavior of a function when the argument tends
towards infinity.

For two functions f and g from R to R,

f €0(g) (or f =0(g))ifand only if
3c,c, > 03IAngVn>ngic-gn) < f(n) <c,-gn)

In this case, we say that the function f is in “Big Theta” of g.

This means that f grows asymptotically the same as g.

The function ¢4 - g is an asymptotic lower bound for f and
C, + g is an asymptotic upper bound for f.

29

ICC Module Computation: Computation & Algorithms |

Big Theta

For two functions f and g from R to R,

f €0(g) (orf =0(g))if and only if
A dci,c; >0IAngVn>ngici-gn) < f(n) <cp-gn

¢, g(n)
f(n)

- —

S

30

ICC Module Computation: Computation & Algorithms |

Example of Growth (continue)
= f(n) =n?+100n + logn + 1000

10”

L
s00 000

i)
U0 O

o
00 100000
1000 V‘ 200000
IlII§ }

0 2 { b 8 10 20 100 i) ol 1000
Small values: behavior is linear Large values: behavior is quadratic

20000

ICC Module Computation: Computation & Algorithms |

Example of Growth

f(n) =n?+100n + logn + 1000

Table with the contributions of the different terms:

n f(n) n2 100n logn 1000
value % value % value % value
1 1’101 1 0.1 100 9.1 0O 00 1000 90.82
10 2’101 100 4.8 1’000 47.6 1 0.0 1000 47.6
100 21°002 10'000 47.6 10000 47.6 2 0.0 1000 4.8
1000 1’101°003 10° 90.8 10° 9.1 3 0.0 1000 0.1
10'000 101’001’004 108 99.0 10 1.0 4 0.0 1000 0.0

f(n) € 0(n*)

32

ICC Module Computation: Computation & Algorithms |

Functions

= Constant, e.g., f(n) =1
» Logarithmic, e.g., f(n) = log(n)

" Linear,e.g., f(n) =n 1000
» “Linearithmic”, e.g., f(n) = n -log(n) 31000
1’000’000

= Quadratic, e.g., f(n) = n?
= Cubic, e.g., f(n) =n?>

= Polynomial, e.g., f(n) = n>® +n? + 10
= Exponential: f(n) = 2™

1’000’000°000

9seaJoul ajel Yimolo

= 10%

=~ 10300

33

ICC Module Computation: Computation & Algorithms |

Example: Big O Notation

" Bound the asymptotic complexity of the following
functions from above and give a proof (i.e., give
some constant c and some starting point ng s.t. for
alln>n,. f(n) <c-gn)

22+n 0(2™) 224N < . N7
3n? + 2" 02" 3n? +2" < c-2M7?
2n% +n3 + 100 0(n?) 2n? +n3+100<c-n3?
10n? + nlog,n 0(n?) 10n? + nlogzn < c-n??

log,(2n) O(log; n) log,(2n) < c-logy(n) ?

34

ICC Module Computation: Computation & Algorithms | NOte that we dO nOt neEd to flnd the SmaIIESt cor no.

Big O Notation

" Bound the asymptotic complexity of the following
functions from above and give a proof (i.e., give
some constant c and some starting point no)

22+n 0(211) 22+n — 22 on <c 2n — Mo > 0
2 1 om n c=4 Whenis 3 -n? < 3.2"?
3n® + 2 0(2) 3.n2+2ns3.2n+2n=4.2n TlOZZ

_ When is 2n* < 2n3and
22 +n3+100 0Ond) c=4

< n3?
2-n%+n%>+100 < 2 - n3+n3+n’ 0 s
Nng =5
> > c=11 When is nlog, n < n??
10n" +nlog,n — 0(n%) 10 - n® +nlog,n < 10 - n? + n? ng =1
be@n) | Ofsm c=2 g = 2

log,(2) + log,(n) < log,(n)+log,(n)

35

ICC Module Computation: Computation & Algorithms |

Big-Theta Notation

= Given the asymptotic complexity of the following
functions and a proof (i.e., give values ¢4, ¢, and n,
such that foralln > ngy.c; - g(n) < f(n) and for all

n>ng. f(n) <c-gn)

22+n

3n? + 2"
2n? +n3 4+ 100

10n?% + nlog; n

log,(2n)

36

ICC Module Computation: Computation & Algorithms |

Big-Theta Notation

= Given the asymptotic complexity of the following
functions and a proof (i.e., give values ¢4, ¢, and n,
such that foralln > ngy.c; - g(n) < f(n) and for all

n>ny f(n) <c-gm)
| Funcion() | Comploi@®) | | A | @ |
24%m 0(2™) ;11 =< 122+n fly=0 SeeBig-O max(0,0)
3n% + 2" e(2M) c; =1 flg =0 See Big-O max(2,0)
2n? +n3 + 100 O(n3) ¢, =1 fig =0 See Big-O max(5,0)
10n% + nlog;n O(n?) ¢ =1 flg =1 See Big-O max(1,1)
log,(2n) O(log, n) c1 =1 g =1 See Big-O max(2,1)

37

ICC Module Computation: Computation & Algorithms |

Comparison of Algorithms

Examples:
e f(n)=nis O(n?) but it is also O(n)
* f(n)=12 is O(n?), O(n), but especially O(1)
* f(n)=n2+ n+ 10is in O(n3) but not in ©(n3)
e f(n)=5n " logn+nisin ©(n * log n) and in O(n?) but not in ©(n?)

38

ICC Module Computation: Computation & Algorithms |

Complexity: Step 4
= Approximate with Big O/Theta notation

GC-Content
input : liste L with n DNA bases

1 1 1

countGC +— 0

fori from1 ton 2 3 N
if L[i] =G or L[i] =C 3 6 o
countGC <+— countGC + 1
4 2 n
return : countGC/n 5 2 1
Recall: 3¢ > 03x,Vx > x| f ()] < ¢ - [g(x)]

f(n)=11-n+3withc=12andn, =1
vn>1:11'n+3<12-n
f(n)isin O(n)

39

ICC Mo dule Computation: Computation & Algorithms |

Which of the following statements is correct?

A. 10-n3+5-nisin 0(n*) Correct
B. 2-n%isin O(n>) Incorrect
C. 10%isin ©(1) Correct
D. 10+ 2n+nisin 0(n) Correct
E. 2-log, (n) isin @(10910(7’1)) Correct (see next slide)

40

ICC Module Computation: Computation & Algorithms |

log,

1.0 | |Og10

Logarithms

logq (Tl) —

logo(n) =

logy(n) 1

logp(a) B logp(a)

log; 10y *%*™

logp(n)

41

ICC Module Computation: Computation & Algorithms |

What is the complexity of this algorithm?

Algorithm1l
input : a list L with n numbers
output : a number s

s+ 0
14— 1
while 1 <n
s <— s+ LJi]
14— 2.1

return : s

A_ @(1) Correct, because in iteration k of

the loop, i=2k and at the end of the

B. @(Iog(n)) loop | > n, so when is 2k>n?

If k > log(n) and we only have log(n)

C. @(n) iterations of the loop.
D. ©(n?)

42

ICC Module Computation: Computation & Algorithms |

What is the complexity of this algorithm?

Algorithm?2
input : a list L with n numbers
output : a number s

s<—0

1+— 1

while 1 < n

for j from 1 ton

s <— s+ L[j]

14— 21

return : s

A. O(log(n))
B. O(n)

C. @(n . |Og(n)) log(n) iterations of the loop with n
D. ©(n?)

instructions per iteration.

ICC Module Computation: Computation & Algorithms |

Other Examples

" Example in videos:
* Check if a set of objects has two identical objects
e Greatest Common Divisor (Euclid)
* Insertion sort

44

ICC Module Computation: Computation & Algorithms |

Sub-Algorithm: Insertion Sort

insertion_sort

input : a list of numbers L with n elements
output : the list L in which all elements are sorted in increasing order

for i from 2 ton

if L[i] < L[i — 1]

return : L

L +— insert_element(L,i)

insert_element

input : a list of numbers L with n elements and an index 1
output : the list L in which the element L[i] is on the right place

] 1

while L[j| < L[j — 1] and j > 1
L +— permut(L,j,j-1)

je—g—-1

return : L

permut

input : a list of numbers L with n elements and two indices j and k
output : the list L in which the elements L[j] and L[k]| are permuted

tmp «— L[j]
L[j] <— L[k]
L[k] «— tmp
return : L

