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Information, Computation, and Communication

Algorithm 1
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§ An algorithm is an effective method, expressed as a 
finite list of well-defined instructions for calculating 
a function.

[Wikipedia]

§ Algorithms exist well before computers: 
already in ancient history (e.g., Egyptian 
division, Euclid’s algorithm for greatest-
common-divisor)

What is an Algorithm?
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§ “Algorithm’ is arguably the single most important 
concept in our world. If we want to understand our 
life and our future, we should make every effort to 
understand what an algorithm is, and how 
algorithms are connected with emotions.”

Yuval Noah Harari, Homo Deus: A Brief History of Tomorrow 

Shaping the Future
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§ Binary addition
§ Binary to decimal conversion and vice versa
§ Procedure to compute the 2s complement
§ Solving a quadratic equation (e.g., 3x2 + 5x + 2)
§ Sorting a list of elements

§ Searching for an element in a list
§ Identifying gene in a DNA-sequence
§ Pagerank/Edgerank

Examples
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§ Name and description of inputs and output

§ Variables (Place holder) to refer to a single element or a list of 
elements

§ Access an element in a list (parenthèse/crochet): L(1),L[1],A[4]
§ Access a sub-list: L(1:4), A[5:6]
§ Assignments (Affectation) : 
§ Mathematical operators:

§ Reference to another algorithm (sous-algorithme): 

How to describe an Algorithm? Pseudo-Code

Cf. document pseudo-
code on Moodle

We start counting at 1, i.e., 
L(1) is the first element in the list.
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§ Control structures (if, for, while)

§ Termination statement:

Pseudo-Code (Cnt.)

Tests

Loops

Conditional Loops
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§ Create an empty list: A=empty or A={}
§ Create a list with some element: A = {2,3,4}
§ Add an element to the list: A.append(2) or “append 2 

to A”
§ Overwrite an element in the list: A(1) ← 3
§ An element of the list can be anything! Even 

another list, e.g., A = { {2,3,4}, {1,2,3}, {3,4}}, or a list 
of list, e.g., B = { { {1,2}, {2,3}, {3} }, { {1}, {2,3}} } }
• A(1) gives the first element = {2,3,4}
• A(1)(3) takes the 1st element and takes the 3rd element = 4

Pseudo-Code (Lists)
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1. Understand an algorithm
2. Write an algorithm
3. Analyze the correctness and complexity of an 

algorithm 

Your Tasks
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Task 1: Understanding an Algorithm

What computation does 
this algorithm perform for
L = {3, 6, 2, 1, 10, 9}?  (n=6)Algorithm 1

It computes the maximum of the list, 
i.e., it returns 10

Line 1, 4
xmax

Line 2
i

Line 3
L[i] > xmax

3

6 2 6 > 3 (true)

6 3 2 > 6 (false)

6 4 1 > 6 (false)

10 5 10 > 6 (true)

10 6 9 > 10 (false)

10 return

an integer
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Another Example

What is the output of algo1 if L = {3, 6, 2, 1, 10, 9}?

Algorithm 2 Line 1,4
s

Line 2
i

Line 3
L[i] mod 2 = 0

Output=3
The algorithm counts the even numbers. 

0

0 1 Is 3 even?

1 2 Is 6 even?

2 3 Is 2 even?

2 4 Is 1 even?

3 5 Is 10 even?

3 6 Is 9 even?

3 return
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§ Problem: computing the GC-Content in a given DNA seq.
§ GC-content (or guanine-cytosine content) is the 

percentage of bases in a DNA (or RNA) molecule that are 
either guanine (G) or cytosine (C). Recall that a strand of 
DNA is a sequence of A (adenine), T (thymine), C, and G’s. 
(RNA has U (uracil) instead of T (thymine)).

§ E.g., 
GC-content of ACCGC = 4/5=0.8
GC-content of ATACTAAA = 1/8=0.125

§ Basic instructions needed: access element in a list, 
compare the element in a list to G/C, addition and division

Task 2: Writing an Algorithm
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GC-Content
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§ A codon is a sequence of three DNA or RNA 
nucleotides that corresponds to a specific amino acid 
or a stop signal during protein synthesis. 

§ Of the 64 codons, 61 represent amino acids, and three 
are stop signals. For example, the RNA codon UAA is a 
stop codon.

Find Stop Codon

§ Problem: Given a RNA sequence of length n, find the 
start position of a UAA stop codon.
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Task 3: Analysis of an Algorithm
§ Key Questions about an Algorithm
• Is it correct?
• Is it efficient?
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1. Does the algorithm terminate for all input? 
2. Does it give us the result we aim for?
• In the common case
• In corner cases (e.g., empty list, value 0)
• In all cases

Strategies to analyze correctness:
• Testing, i.e., “run” (with a computer or by hand) 

the algorithm with different inputs  and compare 
the output with the expected output

• Mathematical reasoning (CS-550)

Correctness
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Be Aware of the Corner Cases!
§ What happens if n=0?

~/src > ./gc_content
0.375
-2147483648
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§ How much time and space (memory) does it need? We focus on time 
complexity. (Number of elementary instructions)

§ In general the complexity is always given in terms of the total input 
size, e.g., if an algorithm has two inputs x, y, the complexity is a 
function of the size of x and y. We focus on one input.

§ Actually running time can depend a lot on specific input: best, average 
worst-case behavior. We focus on worst-case behavior.

§ Finally, for small input values usually all algorithms are fast. We are 
interested in the complexity on large inputs, the complexity when the 
size of the input goes towards infinity, called the 
asymptotic complexity (Big Theta or Big O notation)

Complexity of an Algorithm

Cf. document about complexity on Moodle
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§ The runtime of an algorithm is computed in terms of 
instructions that can be performed in constant time. 
We assume that the following instructions can be 
performed in constant time:
• Assignments (Affectation) 
• Mathematical operators (+,-,*,/,%, mod) using numbers with 

a fixed number of bits (e.g., 32 or 64)
• Comparison operators (>, >=, <, <=, ==)
• Bitwise operator (&, |, and, or,..)
• Access an element (e.g., value or sub-list) in a list

§ Question to answer: How many of these instructions 
does an algorithm use (or ”read”)?

Elementary Instructions
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We aim to estimate how many basic instructions an 
algorithm executes in terms of its input size.

1. Compute the number of instructions per line
2. Compute the number of repetitions per line
3. Sum costs of all lines
4. Approximate functions

Computing the Time Complexity



ICC Module Computation: Computation & Algorithms I

21

§ Compute the number of instructions per line

Complexity: Step 1

Line Instructions Cost

1 1 assignment 1

2 1 assignments, 1 comparison, (1 addition) 3

3 2 list access, 3 comparison, 1 bitwise  op. 6

4 1 addition, 1 assignment 2

5 1 division, 1 return 2

The precise costs per line (e.g., value 2, 3 or 5) are not important 
because we will approximate the overall complexity later. 
Important is to know if the cost is constant or not, 
e.g., a line in which another algorithm is called.
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§ Compute how many times a line is execute or “read” 
(in the worst case)

Complexity: Step 2

Line Cost Repetitions

1 1 1

2 3 n

3 6 n

4 2 n

5 2 1
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§ Sum the costs・repetitions over all lines:

!
!"#

$

𝑐 𝑖 $ 𝑟(𝑖) = 1 + 3𝑛 + 6𝑛 + 2𝑛 + 2 =11𝑛 + 3

Complexity: Step 3

Line Cost Repetitions

1 1 1

2 3 n

3 6 n

4 2 n

5 2 1

Size of the input
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§ We don’t care about the precise number of instructions 
but the general behavior. 

§ It is important to know how complexity evolves according 
to the input size.

§ We aim to know if the number of instructions (aka 
runtime) is linear, quadratic, … or exponential in terms of 
the size of the input.

§ We use the Landau notations 
(also called Big O, Big Omega, or Big Theta notations) 
to obtain this information.

Complexity: Step 4
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Big O notation is a mathematical notation that describes 
the limiting behavior of a function when the argument tends 
towards infinity.

For two functions f and g fromℝ toℝ,
𝑓 ∈ 𝑂 𝑔 (or 𝑓 = 𝑂 𝑔 ) if and only if
∃𝑐 > 0 ∃𝑛! ∀ 𝑛 > 𝑛! ∶ 𝑓 𝑛 ≤ 𝑐 / 𝑔(𝑛)

In this case, we say that the function f is in “Big O” of g.
This means that f grows asymptotically no faster than g.
The function 𝑐 / 𝑔 is an asymptotic upper bound for f.

Landau Notation: O(...)
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Example Big O

𝑓! 𝑛 ∈ 𝑂 𝑓" 𝑛
because there exists a c and n0, 
such that 𝑓! 𝑛 ≤ 𝑐 ' 𝑓"(𝑛)

𝑓! 𝑛

𝑐 ' 𝑓" 𝑛



ICC Module Computation: Computation & Algorithms I

27

Big Ω notation is a mathematical notation that describes 
the limiting behavior of a function when the argument tends 
towards infinity.

For two functions f and g fromℝ toℝ,
𝑓 ∈ Ω 𝑔 (or 𝑓 = Ω 𝑔 ) if and only if
∃𝑐 > 0 ∃𝑛! ∀ 𝑛 > 𝑛! ∶ 𝑐 / 𝑔 𝑛 ≤ | 𝑓 𝑛 |

In this case, we say that the function f is in “Big Omega” of g.
This means that f grows asymptotically not slower than g.
The function 𝑐 / 𝑔 is an asymptotic lower bound for f.

Landau Notation: Ω (...)
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Example Big Omega

𝑓" 𝑛 ∈ Ω 𝑓! 𝑛
because there exists a c and n0, 
such that 𝑐 ' 𝑓! 𝑛 ≤ 𝑓"(𝑛)

𝑐 ' 𝑓! 𝑛

𝑓" 𝑛
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Big Theta notation is a mathematical notation that describes 
the limiting behavior of a function when the argument tends 
towards infinity.

For two functions f and g fromℝ toℝ,
𝑓 ∈ Θ 𝑔 (or 𝑓 = Θ 𝑔 ) if and only if
∃𝑐", 𝑐# > 0 ∃𝑛! ∀ 𝑛 > 𝑛! ∶ 𝑐" / 𝑔 𝑛 ≤ 𝑓(𝑛) ≤ 𝑐# / 𝑔(𝑛)

In this case, we say that the function f is in “Big Theta” of g.
This means that f grows asymptotically the same as g.
The function 𝑐" / 𝑔 is an asymptotic lower bound for f and  

𝑐# / 𝑔 is an asymptotic upper bound for f.

Landau Notation: Θ(...)
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Big Theta
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§ 𝑓 𝑛 = 𝑛% + 100𝑛 + log 𝑛 + 1000
Example of Growth (continue)

Small values: behavior is linear Large values: behavior is quadratic
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Example of Growth

𝑓 𝑛 = 𝑛! + 100𝑛 + log 𝑛 + 1000
Table with the contributions of the different terms:

n f (n) n2 100n log n 1000
value % value % value % value %

1 1’101 1 0.1 100 9.1 0 0.0 1000 90.82
10 2’101 100 4.8 1’000 47.6 1 0.0 1000 47.6
100 21’002 10’000 47.6 10’000 47.6 2 0.0 1000 4.8
1000 1’101’003 106 90.8 105 9.1 3 0.0 1000 0.1

10’000 101’001’004 108 99.0 106 1.0 4 0.0 1000 0.0
...

𝑓 𝑛 ∈ 𝑂(𝑛!)
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§ Constant, e.g., 𝑓 𝑛 = 1
§ Logarithmic, e.g., 𝑓 𝑛 = log(𝑛)
§ Linear, e.g., 𝑓 𝑛 = 𝑛
§ “Linearithmic”, e.g., 𝑓 𝑛 = 𝑛 $ log(𝑛)
§ Quadratic, e.g., 𝑓 𝑛 = 𝑛%

§ Cubic, e.g., 𝑓 𝑛 = 𝑛&

§ Polynomial, e.g., 𝑓 𝑛 = 𝑛$ + 𝑛% + 10
§ Exponential: 𝑓 𝑛 = 2'

Functions

Grow
th  rate increase

n=1000

1

3

1’000

3’000

1’000’000

1’000’000’000

≅ 1015

≅ 10300
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§ Bound the asymptotic complexity of the following 
functions from above and give a proof (i.e., give 
some constant c and some starting point n0, s.t. for 
all n > n0. 𝑓 𝑛 ≤ 𝑐 $ 𝑔(𝑛)

Example: Big O Notation

Function (f) Complexity (g) Constant c Starting point n0

2"#$

3𝑛" + 2$

2𝑛" + 𝑛% + 100

10𝑛" + 𝑛 log2𝑛

log2(2𝑛)

𝑂(2$)

𝑂(2$)

𝑂(𝑛%)

𝑂(𝑛")

𝑂(log2𝑛)

2"#$ ≤ c 0 2$ ?

3𝑛" + 2$ ≤ c 0 2$ ?

2𝑛" + 𝑛% + 100 ≤ c 0 𝑛% ?

10𝑛" + 𝑛 log2𝑛 ≤ c 0 𝑛" ?

log2(2𝑛) ≤ c 0 log2 𝑛 ?
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§ Bound the asymptotic complexity of the following 
functions from above and give a proof (i.e., give 
some constant c and some starting point n0)

Big O Notation

Function Compl. Constant c Starting point n0

2"#$ 𝑂(2$) 2"#$ = 2" 0 2$ ≤ c0 2$, c = 2" 𝑛& ≥ 0

3𝑛" + 2$ 𝑂(2$) c = 4
3 0 𝑛" +2$ ≤ 3 0 2$ + 2$ = 4 0 2$

When is 3 0 𝑛" ≤ 3 0 2$?
𝑛& ≥ 2

2𝑛" + 𝑛% + 100 𝑂(𝑛%) c = 4
2 0 𝑛" +𝑛% + 100 ≤ 2 0 𝑛%+𝑛%+𝑛%

When is 2𝑛" ≤ 2𝑛%and
100 ≤ 𝑛%?
𝑛& ≥ 5

10𝑛" + 𝑛 log2𝑛 𝑂(𝑛") c = 11
10 0 𝑛" +𝑛 log2𝑛 ≤ 10 0 𝑛" + 𝑛"

When is n log2𝑛 ≤ 𝑛"?
𝑛& ≥ 1

log2(2𝑛) 𝑂(log2𝑛)
𝑐 = 2

log2(2) + log2(𝑛) ≤ log2(𝑛)+log2(𝑛)
𝑛& ≥ 2

Note that we do not need to find the smallest c or n0.
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§ Given the asymptotic complexity of the following 
functions and a proof (i.e., give values 𝑐#, 𝑐%, and 𝑛0
such that for all 𝑛 > 𝑛(. 𝑐# $ 𝑔 𝑛 ≤ 𝑓 𝑛 and for all

𝑛 > 𝑛(. 𝑓 𝑛 ≤ 𝑐% $ 𝑔(𝑛)

Big-Theta Notation

Function (f) Complexity (g) 𝑐! 𝑛0 𝑐𝟐 8𝑛0

2"#$

3𝑛" + 2$

2𝑛" + 𝑛% + 100

10𝑛" + 𝑛 log2𝑛

log2(2𝑛)
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§ Given the asymptotic complexity of the following 
functions and a proof (i.e., give values 𝑐#, 𝑐%, and 𝑛0
such that for all 𝑛 > 𝑛(. 𝑐# $ 𝑔 𝑛 ≤ 𝑓 𝑛 and for all

𝑛 > 𝑛(. 𝑓 𝑛 ≤ 𝑐% $ 𝑔(𝑛)

Big-Theta Notation

Function (f) Complexity (g) 𝑐! 8𝑛0 𝑐𝟐 𝑛&

2"#$ Θ(2$) 𝑐! = 1
𝑐! 0 2$ ≤ 2"#$ 8𝑛0 ≥ 0 See Big-O max(0,0)

3𝑛" + 2$ Θ(2$) 𝑐! = 1 8𝑛0 ≥ 0 See Big-O max(2,0)

2𝑛" + 𝑛% + 100 Θ(𝑛%) 𝑐! = 1 8𝑛0 ≥ 0 See Big-O max(5,0)

10𝑛" + 𝑛 log2𝑛 Θ(𝑛") 𝑐! = 1 8𝑛0 ≥ 1 See Big-O max(1,1)

log2(2𝑛) Θ(log2𝑛) 𝑐! = 1 8𝑛0 ≥ 1 See Big-O max(2,1)
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Examples:
• f(n)=n is O(n2) but it is also O(n)
• f(n)=12 is O(n2), O(n), but especially O(1)
• f(n)=n2 + n + 10 is in O(n3) but not in Θ(n3)
• f(n)= 5n・log n + n is in Θ(n・log n) and in O(n2) but not in Θ(n2)

Comparison of Algorithms
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§ Approximate with Big O/Theta notation

Complexity: Step 4

Line Cost Repetitions

1 1 1

2 3 n

3 6 n

4 2 n

5 2 1

∃𝑐 > 0∃𝑥&∀𝑥 > 𝑥& 𝑓 𝑥 ≤ 𝑐 0 |𝑔 𝑥 |Recall:

𝑓 𝑛 = 11 0 𝑛 + 3 with	𝑐 = 12 and	𝑛& = 1
∀𝑛 > 1 ∶ 11 0 𝑛 + 3 ≤ 12 0 𝑛
𝒇 𝒏 is in 𝑶(𝒏)
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Which of the following statements is correct?

A. 10 $ 𝑛& + 5 $ 𝑛 is in 𝑂 𝑛)

B. 2 $ 𝑛% is in Θ 𝑛&

C. 10#( is in Θ 1
D. 10 + 2𝑛 + 𝑛 is in 𝑂 𝑛
E. 2 $ 𝑙𝑜𝑔% 𝑛 is in Θ 𝑙𝑜𝑔#( 𝑛

Correct

Incorrect

Correct

Correct

Correct (see next slide)
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Logarithms

𝑙𝑜𝑔( 𝑛 =
𝑙𝑜𝑔) 𝑛
𝑙𝑜𝑔) 𝑎

=
1

𝑙𝑜𝑔) 𝑎
𝑙𝑜𝑔) 𝑛

𝑙𝑜𝑔!& 𝑛 =
1

𝑙𝑜𝑔" 10
𝑙𝑜𝑔" 𝑛

log2

log10
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What is the complexity of this algorithm?

A. Θ(1)
B. Θ(log(n))
C. Θ(n)
D. Θ(n2)

Correct, because in iteration k of 
the loop, i=2k and at the end of the 

loop I > n, so when is 2k > n?
If k > log(n) and we only have log(n) 

iterations of the loop.
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What is the complexity of this algorithm?

A. Θ(log(n))
B. Θ(n)
C. Θ(n · log(n))
D. Θ(n2)

log(n) iterations of the loop with n 
instructions per iteration.
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§ Example in videos:
• Check if a set of objects has two identical objects
• Greatest Common Divisor (Euclid)
• Insertion sort

Other Examples
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Sub-Algorithm: Insertion Sort


