
ICC Module Computation: Computation & Algorithms I

1

Information, Computation, and Communication

Algorithm 1

ICC Module Computation: Computation & Algorithms I

2

§ An algorithm is an effective method, expressed as a
finite list of well-defined instructions for calculating
a function.

[Wikipedia]

§ Algorithms exist well before computers:
already in ancient history (e.g., Egyptian
division, Euclid’s algorithm for greatest-
common-divisor)

What is an Algorithm?

ICC Module Computation: Computation & Algorithms I

3

§ “Algorithm’ is arguably the single most important
concept in our world. If we want to understand our
life and our future, we should make every effort to
understand what an algorithm is, and how
algorithms are connected with emotions.”

Yuval Noah Harari, Homo Deus: A Brief History of Tomorrow

Shaping the Future

ICC Module Computation: Computation & Algorithms I

4

§ Binary addition
§ Binary to decimal conversion and vice versa
§ Procedure to compute the 2s complement
§ Solving a quadratic equation (e.g., 3x2 + 5x + 2)
§ Sorting a list of elements

§ Searching for an element in a list
§ Identifying gene in a DNA-sequence
§ Pagerank/Edgerank

Examples

ICC Module Computation: Computation & Algorithms I

5

§ Name and description of inputs and output

§ Variables (Place holder) to refer to a single element or a list of
elements

§ Access an element in a list (parenthèse/crochet): L(1),L[1],A[4]
§ Access a sub-list: L(1:4), A[5:6]
§ Assignments (Affectation) :
§ Mathematical operators:

§ Reference to another algorithm (sous-algorithme):

How to describe an Algorithm? Pseudo-Code

Cf. document pseudo-
code on Moodle

We start counting at 1, i.e.,
L(1) is the first element in the list.

ICC Module Computation: Computation & Algorithms I

6

§ Control structures (if, for, while)

§ Termination statement:

Pseudo-Code (Cnt.)

Tests

Loops

Conditional Loops

ICC Module Computation: Computation & Algorithms I

7

§ Create an empty list: A=empty or A={}
§ Create a list with some element: A = {2,3,4}
§ Add an element to the list: A.append(2) or “append 2

to A”
§ Overwrite an element in the list: A(1) ← 3
§ An element of the list can be anything! Even

another list, e.g., A = { {2,3,4}, {1,2,3}, {3,4}}, or a list
of list, e.g., B = { { {1,2}, {2,3}, {3} }, { {1}, {2,3}} } }
• A(1) gives the first element = {2,3,4}
• A(1)(3) takes the 1st element and takes the 3rd element = 4

Pseudo-Code (Lists)

ICC Module Computation: Computation & Algorithms I

8

1. Understand an algorithm
2. Write an algorithm
3. Analyze the correctness and complexity of an

algorithm

Your Tasks

ICC Module Computation: Computation & Algorithms I

9

Task 1: Understanding an Algorithm

What computation does
this algorithm perform for
L = {3, 6, 2, 1, 10, 9}? (n=6)Algorithm 1

It computes the maximum of the list,
i.e., it returns 10

Line 1, 4
xmax

Line 2
i

Line 3
L[i] > xmax

3

6 2 6 > 3 (true)

6 3 2 > 6 (false)

6 4 1 > 6 (false)

10 5 10 > 6 (true)

10 6 9 > 10 (false)

10 return

an integer

ICC Module Computation: Computation & Algorithms I

10

Another Example

What is the output of algo1 if L = {3, 6, 2, 1, 10, 9}?

Algorithm 2 Line 1,4
s

Line 2
i

Line 3
L[i] mod 2 = 0

Output=3
The algorithm counts the even numbers.

0

0 1 Is 3 even?

1 2 Is 6 even?

2 3 Is 2 even?

2 4 Is 1 even?

3 5 Is 10 even?

3 6 Is 9 even?

3 return

ICC Module Computation: Computation & Algorithms I

11

§ Problem: computing the GC-Content in a given DNA seq.
§ GC-content (or guanine-cytosine content) is the

percentage of bases in a DNA (or RNA) molecule that are
either guanine (G) or cytosine (C). Recall that a strand of
DNA is a sequence of A (adenine), T (thymine), C, and G’s.
(RNA has U (uracil) instead of T (thymine)).

§ E.g.,
GC-content of ACCGC = 4/5=0.8
GC-content of ATACTAAA = 1/8=0.125

§ Basic instructions needed: access element in a list,
compare the element in a list to G/C, addition and division

Task 2: Writing an Algorithm

ICC Module Computation: Computation & Algorithms I

12

GC-Content

ICC Module Computation: Computation & Algorithms I

13

§ A codon is a sequence of three DNA or RNA
nucleotides that corresponds to a specific amino acid
or a stop signal during protein synthesis.

§ Of the 64 codons, 61 represent amino acids, and three
are stop signals. For example, the RNA codon UAA is a
stop codon.

Find Stop Codon

§ Problem: Given a RNA sequence of length n, find the
start position of a UAA stop codon.

ICC Module Computation: Computation & Algorithms I

14

ICC Module Computation: Computation & Algorithms I

15

Task 3: Analysis of an Algorithm
§ Key Questions about an Algorithm
• Is it correct?
• Is it efficient?

ICC Module Computation: Computation & Algorithms I

16

1. Does the algorithm terminate for all input?
2. Does it give us the result we aim for?
• In the common case
• In corner cases (e.g., empty list, value 0)
• In all cases

Strategies to analyze correctness:
• Testing, i.e., “run” (with a computer or by hand)

the algorithm with different inputs and compare
the output with the expected output

• Mathematical reasoning (CS-550)

Correctness

ICC Module Computation: Computation & Algorithms I

17

Be Aware of the Corner Cases!
§ What happens if n=0?

~/src > ./gc_content
0.375
-2147483648

ICC Module Computation: Computation & Algorithms I

18

§ How much time and space (memory) does it need? We focus on time
complexity. (Number of elementary instructions)

§ In general the complexity is always given in terms of the total input
size, e.g., if an algorithm has two inputs x, y, the complexity is a
function of the size of x and y. We focus on one input.

§ Actually running time can depend a lot on specific input: best, average
worst-case behavior. We focus on worst-case behavior.

§ Finally, for small input values usually all algorithms are fast. We are
interested in the complexity on large inputs, the complexity when the
size of the input goes towards infinity, called the
asymptotic complexity (Big Theta or Big O notation)

Complexity of an Algorithm

Cf. document about complexity on Moodle

ICC Module Computation: Computation & Algorithms I

19

§ The runtime of an algorithm is computed in terms of
instructions that can be performed in constant time.
We assume that the following instructions can be
performed in constant time:
• Assignments (Affectation)
• Mathematical operators (+,-,*,/,%, mod) using numbers with

a fixed number of bits (e.g., 32 or 64)
• Comparison operators (>, >=, <, <=, ==)
• Bitwise operator (&, |, and, or,..)
• Access an element (e.g., value or sub-list) in a list

§ Question to answer: How many of these instructions
does an algorithm use (or ”read”)?

Elementary Instructions

ICC Module Computation: Computation & Algorithms I

20

We aim to estimate how many basic instructions an
algorithm executes in terms of its input size.

1. Compute the number of instructions per line
2. Compute the number of repetitions per line
3. Sum costs of all lines
4. Approximate functions

Computing the Time Complexity

ICC Module Computation: Computation & Algorithms I

21

§ Compute the number of instructions per line

Complexity: Step 1

Line Instructions Cost

1 1 assignment 1

2 1 assignments, 1 comparison, (1 addition) 3

3 2 list access, 3 comparison, 1 bitwise op. 6

4 1 addition, 1 assignment 2

5 1 division, 1 return 2

The precise costs per line (e.g., value 2, 3 or 5) are not important
because we will approximate the overall complexity later.
Important is to know if the cost is constant or not,
e.g., a line in which another algorithm is called.

ICC Module Computation: Computation & Algorithms I

22

§ Compute how many times a line is execute or “read”
(in the worst case)

Complexity: Step 2

Line Cost Repetitions

1 1 1

2 3 n

3 6 n

4 2 n

5 2 1

ICC Module Computation: Computation & Algorithms I

23

§ Sum the costs・repetitions over all lines:

!
!"#

$

𝑐 𝑖 $ 𝑟(𝑖) = 1 + 3𝑛 + 6𝑛 + 2𝑛 + 2 =11𝑛 + 3

Complexity: Step 3

Line Cost Repetitions

1 1 1

2 3 n

3 6 n

4 2 n

5 2 1

Size of the input

N
um

be
r o

f i
ns

tr
uc

tio
ns

ICC Module Computation: Computation & Algorithms I

24

§ We don’t care about the precise number of instructions
but the general behavior.

§ It is important to know how complexity evolves according
to the input size.

§ We aim to know if the number of instructions (aka
runtime) is linear, quadratic, … or exponential in terms of
the size of the input.

§ We use the Landau notations
(also called Big O, Big Omega, or Big Theta notations)
to obtain this information.

Complexity: Step 4

ICC Module Computation: Computation & Algorithms I

25

Big O notation is a mathematical notation that describes
the limiting behavior of a function when the argument tends
towards infinity.

For two functions f and g fromℝ toℝ,
𝑓 ∈ 𝑂 𝑔 (or 𝑓 = 𝑂 𝑔) if and only if
∃𝑐 > 0 ∃𝑛! ∀ 𝑛 > 𝑛! ∶ 𝑓 𝑛 ≤ 𝑐 / 𝑔(𝑛)

In this case, we say that the function f is in “Big O” of g.
This means that f grows asymptotically no faster than g.
The function 𝑐 / 𝑔 is an asymptotic upper bound for f.

Landau Notation: O(...)

ICC Module Computation: Computation & Algorithms I

26

Example Big O

𝑓! 𝑛 ∈ 𝑂 𝑓" 𝑛
because there exists a c and n0,
such that 𝑓! 𝑛 ≤ 𝑐 ' 𝑓"(𝑛)

𝑓! 𝑛

𝑐 ' 𝑓" 𝑛

ICC Module Computation: Computation & Algorithms I

27

Big Ω notation is a mathematical notation that describes
the limiting behavior of a function when the argument tends
towards infinity.

For two functions f and g fromℝ toℝ,
𝑓 ∈ Ω 𝑔 (or 𝑓 = Ω 𝑔) if and only if
∃𝑐 > 0 ∃𝑛! ∀ 𝑛 > 𝑛! ∶ 𝑐 / 𝑔 𝑛 ≤ | 𝑓 𝑛 |

In this case, we say that the function f is in “Big Omega” of g.
This means that f grows asymptotically not slower than g.
The function 𝑐 / 𝑔 is an asymptotic lower bound for f.

Landau Notation: Ω (...)

ICC Module Computation: Computation & Algorithms I

28

Example Big Omega

𝑓" 𝑛 ∈ Ω 𝑓! 𝑛
because there exists a c and n0,
such that 𝑐 ' 𝑓! 𝑛 ≤ 𝑓"(𝑛)

𝑐 ' 𝑓! 𝑛

𝑓" 𝑛

ICC Module Computation: Computation & Algorithms I

29

Big Theta notation is a mathematical notation that describes
the limiting behavior of a function when the argument tends
towards infinity.

For two functions f and g fromℝ toℝ,
𝑓 ∈ Θ 𝑔 (or 𝑓 = Θ 𝑔) if and only if
∃𝑐", 𝑐# > 0 ∃𝑛! ∀ 𝑛 > 𝑛! ∶ 𝑐" / 𝑔 𝑛 ≤ 𝑓(𝑛) ≤ 𝑐# / 𝑔(𝑛)

In this case, we say that the function f is in “Big Theta” of g.
This means that f grows asymptotically the same as g.
The function 𝑐" / 𝑔 is an asymptotic lower bound for f and

𝑐# / 𝑔 is an asymptotic upper bound for f.

Landau Notation: Θ(...)

ICC Module Computation: Computation & Algorithms I

30

Big Theta

ICC Module Computation: Computation & Algorithms I

31

§ 𝑓 𝑛 = 𝑛% + 100𝑛 + log 𝑛 + 1000
Example of Growth (continue)

Small values: behavior is linear Large values: behavior is quadratic

ICC Module Computation: Computation & Algorithms I

32

Example of Growth

𝑓 𝑛 = 𝑛! + 100𝑛 + log 𝑛 + 1000
Table with the contributions of the different terms:

n f (n) n2 100n log n 1000
value % value % value % value %

1 1’101 1 0.1 100 9.1 0 0.0 1000 90.82
10 2’101 100 4.8 1’000 47.6 1 0.0 1000 47.6
100 21’002 10’000 47.6 10’000 47.6 2 0.0 1000 4.8
1000 1’101’003 106 90.8 105 9.1 3 0.0 1000 0.1

10’000 101’001’004 108 99.0 106 1.0 4 0.0 1000 0.0
...

𝑓 𝑛 ∈ 𝑂(𝑛!)

ICC Module Computation: Computation & Algorithms I

33

§ Constant, e.g., 𝑓 𝑛 = 1
§ Logarithmic, e.g., 𝑓 𝑛 = log(𝑛)
§ Linear, e.g., 𝑓 𝑛 = 𝑛
§ “Linearithmic”, e.g., 𝑓 𝑛 = 𝑛 $ log(𝑛)
§ Quadratic, e.g., 𝑓 𝑛 = 𝑛%

§ Cubic, e.g., 𝑓 𝑛 = 𝑛&

§ Polynomial, e.g., 𝑓 𝑛 = 𝑛$ + 𝑛% + 10
§ Exponential: 𝑓 𝑛 = 2'

Functions

Grow
th rate increase

n=1000

1

3

1’000

3’000

1’000’000

1’000’000’000

≅ 1015

≅ 10300

ICC Module Computation: Computation & Algorithms I

34

§ Bound the asymptotic complexity of the following
functions from above and give a proof (i.e., give
some constant c and some starting point n0, s.t. for
all n > n0. 𝑓 𝑛 ≤ 𝑐 $ 𝑔(𝑛)

Example: Big O Notation

Function (f) Complexity (g) Constant c Starting point n0

2"#$

3𝑛" + 2$

2𝑛" + 𝑛% + 100

10𝑛" + 𝑛 log2𝑛

log2(2𝑛)

𝑂(2$)

𝑂(2$)

𝑂(𝑛%)

𝑂(𝑛")

𝑂(log2𝑛)

2"#$ ≤ c 0 2$?

3𝑛" + 2$ ≤ c 0 2$?

2𝑛" + 𝑛% + 100 ≤ c 0 𝑛% ?

10𝑛" + 𝑛 log2𝑛 ≤ c 0 𝑛" ?

log2(2𝑛) ≤ c 0 log2 𝑛 ?

ICC Module Computation: Computation & Algorithms I

35

§ Bound the asymptotic complexity of the following
functions from above and give a proof (i.e., give
some constant c and some starting point n0)

Big O Notation

Function Compl. Constant c Starting point n0

2"#$ 𝑂(2$) 2"#$ = 2" 0 2$ ≤ c0 2$, c = 2" 𝑛& ≥ 0

3𝑛" + 2$ 𝑂(2$) c = 4
3 0 𝑛" +2$ ≤ 3 0 2$ + 2$ = 4 0 2$

When is 3 0 𝑛" ≤ 3 0 2$?
𝑛& ≥ 2

2𝑛" + 𝑛% + 100 𝑂(𝑛%) c = 4
2 0 𝑛" +𝑛% + 100 ≤ 2 0 𝑛%+𝑛%+𝑛%

When is 2𝑛" ≤ 2𝑛%and
100 ≤ 𝑛%?
𝑛& ≥ 5

10𝑛" + 𝑛 log2𝑛 𝑂(𝑛") c = 11
10 0 𝑛" +𝑛 log2𝑛 ≤ 10 0 𝑛" + 𝑛"

When is n log2𝑛 ≤ 𝑛"?
𝑛& ≥ 1

log2(2𝑛) 𝑂(log2𝑛)
𝑐 = 2

log2(2) + log2(𝑛) ≤ log2(𝑛)+log2(𝑛)
𝑛& ≥ 2

Note that we do not need to find the smallest c or n0.

ICC Module Computation: Computation & Algorithms I

36

§ Given the asymptotic complexity of the following
functions and a proof (i.e., give values 𝑐#, 𝑐%, and 𝑛0
such that for all 𝑛 > 𝑛(. 𝑐# $ 𝑔 𝑛 ≤ 𝑓 𝑛 and for all

𝑛 > 𝑛(. 𝑓 𝑛 ≤ 𝑐% $ 𝑔(𝑛)

Big-Theta Notation

Function (f) Complexity (g) 𝑐! 𝑛0 𝑐𝟐 8𝑛0

2"#$

3𝑛" + 2$

2𝑛" + 𝑛% + 100

10𝑛" + 𝑛 log2𝑛

log2(2𝑛)

ICC Module Computation: Computation & Algorithms I

37

§ Given the asymptotic complexity of the following
functions and a proof (i.e., give values 𝑐#, 𝑐%, and 𝑛0
such that for all 𝑛 > 𝑛(. 𝑐# $ 𝑔 𝑛 ≤ 𝑓 𝑛 and for all

𝑛 > 𝑛(. 𝑓 𝑛 ≤ 𝑐% $ 𝑔(𝑛)

Big-Theta Notation

Function (f) Complexity (g) 𝑐! 8𝑛0 𝑐𝟐 𝑛&

2"#$ Θ(2$) 𝑐! = 1
𝑐! 0 2$ ≤ 2"#$ 8𝑛0 ≥ 0 See Big-O max(0,0)

3𝑛" + 2$ Θ(2$) 𝑐! = 1 8𝑛0 ≥ 0 See Big-O max(2,0)

2𝑛" + 𝑛% + 100 Θ(𝑛%) 𝑐! = 1 8𝑛0 ≥ 0 See Big-O max(5,0)

10𝑛" + 𝑛 log2𝑛 Θ(𝑛") 𝑐! = 1 8𝑛0 ≥ 1 See Big-O max(1,1)

log2(2𝑛) Θ(log2𝑛) 𝑐! = 1 8𝑛0 ≥ 1 See Big-O max(2,1)

ICC Module Computation: Computation & Algorithms I

38

Examples:
• f(n)=n is O(n2) but it is also O(n)
• f(n)=12 is O(n2), O(n), but especially O(1)
• f(n)=n2 + n + 10 is in O(n3) but not in Θ(n3)
• f(n)= 5n・log n + n is in Θ(n・log n) and in O(n2) but not in Θ(n2)

Comparison of Algorithms

ICC Module Computation: Computation & Algorithms I

39

§ Approximate with Big O/Theta notation

Complexity: Step 4

Line Cost Repetitions

1 1 1

2 3 n

3 6 n

4 2 n

5 2 1

∃𝑐 > 0∃𝑥&∀𝑥 > 𝑥& 𝑓 𝑥 ≤ 𝑐 0 |𝑔 𝑥 |Recall:

𝑓 𝑛 = 11 0 𝑛 + 3 with	𝑐 = 12 and	𝑛& = 1
∀𝑛 > 1 ∶ 11 0 𝑛 + 3 ≤ 12 0 𝑛
𝒇 𝒏 is in 𝑶(𝒏)

ICC Module Computation: Computation & Algorithms I

40

Which of the following statements is correct?

A. 10 $ 𝑛& + 5 $ 𝑛 is in 𝑂 𝑛)

B. 2 $ 𝑛% is in Θ 𝑛&

C. 10#(is in Θ 1
D. 10 + 2𝑛 + 𝑛 is in 𝑂 𝑛
E. 2 $ 𝑙𝑜𝑔% 𝑛 is in Θ 𝑙𝑜𝑔#(𝑛

Correct

Incorrect

Correct

Correct

Correct (see next slide)

ICC Module Computation: Computation & Algorithms I

41

Logarithms

𝑙𝑜𝑔(𝑛 =
𝑙𝑜𝑔) 𝑛
𝑙𝑜𝑔) 𝑎

=
1

𝑙𝑜𝑔) 𝑎
𝑙𝑜𝑔) 𝑛

𝑙𝑜𝑔!& 𝑛 =
1

𝑙𝑜𝑔" 10
𝑙𝑜𝑔" 𝑛

log2

log10

ICC Module Computation: Computation & Algorithms I

42

What is the complexity of this algorithm?

A. Θ(1)
B. Θ(log(n))
C. Θ(n)
D. Θ(n2)

Correct, because in iteration k of
the loop, i=2k and at the end of the

loop I > n, so when is 2k > n?
If k > log(n) and we only have log(n)

iterations of the loop.

ICC Module Computation: Computation & Algorithms I

43

What is the complexity of this algorithm?

A. Θ(log(n))
B. Θ(n)
C. Θ(n · log(n))
D. Θ(n2)

log(n) iterations of the loop with n
instructions per iteration.

ICC Module Computation: Computation & Algorithms I

44

§ Example in videos:
• Check if a set of objects has two identical objects
• Greatest Common Divisor (Euclid)
• Insertion sort

Other Examples

ICC Module Computation: Computation & Algorithms I

45

Sub-Algorithm: Insertion Sort

