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Information, Computation, 
and Communication

Compression of Data
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Objective
§ How to measure the amount of information present in data?
§ How to store data using the least space possible (with or 

without losing information)?
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Introduction
§ Why do you care about compressing data?

• to reduce the storage space used when storing data
• to reduce transmission time and congestion problems when 

transmitting data
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Introduction
§ French is full of redundancy! 

Sleon une édtue de l’Uvinertisé de Cmabrigde, l’odrre des ltteers dnas
un mot n’a pas d’ipmrotncae, la suele coshe ipmrotnate est que la 
pmeirère et la drenèire soinet à la bnnoe pclae. Le rsete peut êrte dans
un dsérorde ttoal et vuos puoevz tujoruos lrie snas porlbème. C’est
prace que le creaveu hmauin ne lit pas chuaqe ltetre elle-mmêe, mias le 
mot comme un tuot.

§ English as well!

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in 
waht oredr the ltteers in a wrod are, the olny iprmoetnt tihng is taht the 
frist and lsat ltteer are at the rghit pclae. The rset can be a toatl mses
and you can sitll raed it wouthit a porbelm.

§ Why is there so much redundancy in languages?
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Introduction
§ There are two types of compression:

§ Lossless compression, when you want to keep all the data 
stored in compressed form.

§ Examples: tickets for a concert, tax return, ballot papers, 
scientific articles

§ Lossy compression, when not all details are important and a 
little distortion is allowed.

§ Examples: podcasted programs and music tracks in mp3 format, 
photo sharing on the web, YouTube videos ...
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Agenda: This and Next Week
§ Notion of entropy
§ Lossless compression
§ Shannon-Fano algorithm
§ Huffman algorithm
§ Performance analysis - Shannon's theorem
§ Lossy compression
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Entropy
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Entropy
§ Here is a sequence of 16 letters

A B C D E F G H I J K L M N O P

§ Game #1: You have to guess which letter I picked at random by 
asking a minimum number of questions, to which I can answer 
only yes or no.

§ Solution: 4 questions are needed regardless of the letter that was 
chosen (cf. binary search algorithm). 
Therefore, we says that the entropy of this sequence is 4.

§ Note that 16 = 24, so 4 = log2(16)



ICC Module Communication – Compression

9

Entropy
§ Here is another sequence of 16 letters (not counting the spaces)

I L  F A I T  B E A U  A  I B I Z A

§ Game #2: The game is the same as before.
§ Remarks:

• I choose one of the 16 positions by chance (uniformly random).
• You have to guess only the letter (not the position)

How many binary questions are needed on average to guess the 
letter?
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Entropy
I L  F A I T  B E A U  A  I B I Z A

Solution: Sort the letters in descending order of the number of 
appearances in the sequence:

The idea is the same as before: we separate the set of letters into 
two equal parts in terms of number of appearances, which gives:
Question #1: is the letter an I or an A?
§ If the answer is yes, Question #2: is the letter an I?
§ If the answer is no,  Question #2: is the letter a B, L, or F?  etc.

Letter I A B L F T E U Z
Appearances 4 4 2 1 1 1 1 1 1
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Is it I or A?

Is it I? Is it B, L, or F?

Is it B? Is it T or E?I A

B Is it L?

L F

Is it T?

T E

Is it U?

U Z

2 Questions

3 Questions

4 Questions
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Entropy
I L  F A I T  B E A U  A  I B I Z A

We say that the entropy of this sequence is equal to 2.875.

Letter I A B L F T E U Z
Appearances 4 4 2 1 1 1 1 1 1
Questions 2 2 3 4 4 4 4 4 4

Number of questions to ask on average:

4
16 $ 2 +

4
16 $ 2 +

2
16 $ 3 +

1
16 $ 4 +

1
16 $ 4 +

1
16 $ 4 +

1
16 $ 4 +

1
16 $ 4 +

1
16 $ 4 =

2 $
4
16

$ 2 +
2
16

$ 3 + 6 $
1
16

$ 4 =
16 + 6 + 24

16
=
46
16

= 2.875

https://www.shannonentropy.netmark.pl/
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Entropy
§ Yet another sequence of 16 letters

A A A A A A A A A A A A A A A A

§ Game #3: The game is the same as before

§ This time, no question is needed to guess the chosen letter!

§ We say that the entropy of this sequence is equal to 0.
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Entropy
I L  F A I T  B E A U  A  I B I Z A

Remark:
• To guess a letter that appears 1 time out of 16, we need 4 questions. 

4 =  log2(16)
• To guess a letter that appears 2 times out of 16 (i.e., p=1/8), we need 3 

questions. 3 =  log2(8)
• To guess a letter that appears 4 times out of 16 (i.e., p=1/4), we need 2 

questions. 2 =  log2(4)
• In summary, to guess a letter that appears with a probability of p, we 

need log2(1/p) questions.

Letter I A B L F T E U Z
Appearances 4 4 2 1 1 1 1 1 1
Questions 2 2 3 4 4 4 4 4 4
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Entropy

Definition:
Let X be a sequence of letters from the alphabet A =  {a1, . . . , an } .

Let pj  be the probability that letter aj  appears in the sequence X.
(Note that 0 ≤  pj ≤  1 for all j and that p1 +  . . . +  pn =  1).

The entropy of a sequence X is defined as

H(X ) =  p1 log2
1 
p1

+  . . . +  pn log2
1 
pn

Therefore, if pj =  0, we set pj log2
1 
pj

=  0.

(   ) (   )

(   )
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p1 log2 (1/p1) + p2 log2 (1/p2)
with p2 = 1 – p1
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Entropy
§ Origin in Physics (Boltzmann, 1872):

• Entropy measures disorder in a physical system.
• Ludwig Eduard Boltzmann (1844-1905)

◦defender of the existence of atoms
◦ father of statistical physics

§ Information Theory (Shannon, 1948):
• Entropy measures the "amount of information” 

contained in a signal.
• Claude Edwood Shannon (1916-2001)

◦mathematician, electrical engineer, cryptologist,
◦ father of information theory, juggler ...

§ Or (as we have just seen): Entropy is equal to the average 
number of questions needed to guess a letter chosen randomly 
in a sequence.

http://www.science4all.org/article/shannons-information-theory/
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Entropy

Interpretation:

M A P J O F B G I L C K D E H N 

I L  F A I T  B E A U  A  I B I Z A

H(X ) =  4

H(X ) =  2.875

H(X ) =  0A A A A A A A A A A A A A A A A

The more different letters there are in the message, the more 
disorder there is, the more variety and therefore the more 
"information" is in the message.

The more similar letters there are in the message, the less 
disorder there is, the more redundancy there is and therefore the 
less "information” is in the message.
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Entropy
§ Interlude: Which of these two words has the greatest entropy?

E N T R O P I E or D E S O R D R E ?

§ Which of these municipalities has the highest/the lowest 
entropy?

A V E N C H E S,   C O S S O N A Y,   E C U B L E N S,
G R A N D S O N,   L A U S A N N E   or   M O N T R E U X   ?
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Entropy
Some properties of entropy:

• For a given probability of appearance 0 < p ≤ 1, log2(1/p) ≥ 0 but it 
is not necessarily an integer number (e.g., if p =  1/ 3).

• Lower bound: H(X ) ≥  0 in general and H(X ) =  0 if and only if the 
order is total (that is, if all the letters are the same).

• Upper bound: if n is the size of the alphabet, H(X ) ≤  log2(n) in 
general and H(X ) =  log2(n) if and only if the disorder is total 
(that is, if all the letters are different).

H(X ) =  p1 log2
1 
p1

+  . . . +  pn log2
1 
pn

(   ) (   )
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(        )x1 +  x2 

2
log2(x1) +  log2(x2)

2
≤  log2 for all x1, x2 ≥  0

H(X ) ≥  0 in general: note that 0 <  pj ≤  1 simply implies that 
pj log2 (1/pj) ≥ 0, and therefore that H(X ) ≥ 0.

More generally, if 0 ≤  p1, p2 ≤  1 and p1 +  p2 =  1, then:
p1 log2(x1) +  p2 log2(x2) ≤  log2(p1 x1 +  p2 x2) for all x1, x2 ≥  0

In particular, this means that:

Lower and Upper Bound (1/2)

H(X ) ≤  log2(n) in general: note that the function
f (x ) =  log2(x ) is concave for x ≥  0:

x1 x2(x1 +  x2)/2
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Even more generally, if 0 ≤  pj ≤  1 et p1 +  . . . +  pn =  1, then

p1 log2(x1) +  . . . +  pn log2(xn ) ≤  log2(p1 x1 +  . . . +  pn xn ) for all x1, . . . , xn ≥  0.

Applying this inequality with xj = 1/p j we finally get

1 
p

1 
pH(X )   =    p1 log2

1
+ . . . +  pn log2

≤    log2 +  . . . +  p =  log2(1 +  . . . +  1) =  log2(n)
p1

p1

pn 

n

n 
(   ) (   )

(                )

Lower and Upper Bound (2/2)
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Application of Entropy:
Lossless Compression
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Lossless Compression
§ As discussed, data compression allows us to

• reduce the storage used to store data
• reduce transmission time and congestion problems when 

transmitting data
§ The basic principle behind data compression is to suppress 

redundancy contained in the data (e.g., letters or words that 
often come up in a message are abbreviated)

§ When talking about lossless compression, it is required that 
the original message can be completely recovered from the 
compressed data.
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Lossless Compression
§ Examples of lossless compression algorithms

• Language in txt-messages (SMS): "slt” (salut), 
“tqt” (t’inquiète), “thx” (thanks), "lol” (laughing out loud), etc.
words that are used often are reduced to short sequences of 
letters.

• Acronyms: EPFL, UNIL, SV, IC, etc...
• Morse Code: “e” = .    “a” = .– “s” = ...     “t” = –

but “x”= –..– “z"= – – ..

§ The concept of entropy makes it possible to compress data in a 
systematic and optimal way.
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Lossless Compression
§ Let's go back to our examples: suppose you want to send a txt (SMS) 

with the following message to a friend:

I L  F A I T  B E A U  A  I B I Z A

§ The goal of the game is now to minimize the number of bits needed to 
represent this message.

Important notes:
§ The person who receives your message must be able to read it!
§ Before sending the message, the sender and the recipient can (and 

even have to) agree on a common dictionary.
Example: A = '01', B = '10', etc.
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Lossless Compression
I L   F A I T   B E A U   A   I B I Z A

§ Solution 1: use the ASCII code (see slides of lesson “Information 
Representation): each letter is represented by 8 bits; 16 × 8 = 128 bits 
are needed to represent this message.

§ Solution 2: Note that the message to be represented is composed of 
only 16 letters: we only need 4 bits per letter (24 = 16); and therefore 
16 × 4 = 64 bits in total.

§ Solution 3: Notice that some letters are repeated: there are actually 
only 9 different letters. And some are more common than others ...

§ How to proceed?
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Shannon-Fano Algorithm
§ Robert Fano (1917-2016)

• professor at MIT
• another pioneer of information theory

§ Let's go back to our questions for “I L  F A I T  B E A U  A  I B I Z A”

§ In order to assign a bit sequence (a "code word") to each letter, we 
follow the following two rules:
• Rule 1: The number of bits attributed to each letter is equal to the 

number of questions needed to guess it.
• Rule 2: Bits 0 or 1 are assigned based on the answers to the 

questions. More precisely, the bit number j is equal to 1 or 0 
depending on whether the answer to the question was yes or no.

letter I A B L F T E U Z
appearances 4 4 2 1 1 1 1 1 1
questions 2 2 3 4 4 4 4 4 4
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Is it I or A?

Is it I? Is it B, L, or F?

Is it B? Is it T or E?I A

B Is it L?

L F

Is it T?

T E

Is it U?

U Z

2 Bits:
I … 11
A.. 10 3 Questions

4 Questions

I L  F A I T  B E A U  A  I B I Z A

1

1 1

1

1 1

1

1

0

0 0

0

0

0

0 0

letter I A B L F T E U Z
appearances 4 4 2 1 1 1 1 1 1
questions 2 2 3 4 4 4 4 4 4

2 Questions

4 Bits: L … 0101, F…0100, ….

3 Bits:
B … 011
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Shannon-Fano Algorithm

§ The message "IL FAIT BEAU A IBIZA" is written as follows:

11 0101 0100 10 11 0011 . . .

§ Observation 1: In the dictionary, no code word is the prefix of 
another. Therefore, the encoded message can be decoded letter 
by letter (without waiting for the next letter or the end of the 
message).

letter I A B L F T E U Z
code word 11 10 011 0101 0100 0011 0010 0001 0000
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Shannon-Fano Algorithm

§ Observation 2: The number of used bits is equal to
8 × 2 +  2 × 3  +  6 × 4 = 16 + 6 + 24 = 46

§ Compared to Solution 2, which requires 64 bits, one saves 
approximately 25% of bits.

§ Since the message has 16 letters, the average number of bits used per 
letter is 46/16 = 2.875 = H(X) = entropy of the message

§ We will see later that the entropy is a lower bound on the average 
number of bits per letter that are required: no compression algorithm 
can go below this bound. 

§ This is the statement of one of Shannon's theorems.

letter I A B L F T E U Z
appearances 4 4 2 1 1 1 1 1 1
code word 11 10 011 0101 0100 0011 0010 0001 0000
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Shannon-Fano Algorithm (Continued)
§ Let’s consider another sequence (12 letters in total, 

without spaces):
JE PARS A PARIS

§ How would you proceed to represent this sequence 
with a minimum number of bits per letter? 

§ Let's go back again to our questions game and build the same 
table as before, sorting the letters in descending order of the 
number of appearances:

§ Note here that it is not possible to divide the set of letters into 
two parts such that the number of appearances on the left 
equals the number of appearances on the right.

letter A P R S J E I
appearances 3 2 2 2 1 1 1
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Shannon-Fano Algorithm (Continued)

§ However, we make sure to minimize the difference between 
the number of appearances on the left and on the right.

§ In the example above, there are actually two possibilities for the 
first question:
• Is the letter an A or a P? (5 appearances left, 7 right)
• Is the letter an A, P or R? (7 left, 5 right)

§ Suppose we choose the first possibility; the game continues as 
before, with this new a little more flexible rule...

letter A P R S J E I
appearances 3 2 2 2 1 1 1
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JE PARS A PARIS

Is it A or P?

Is it A? Is it R or S?

Is it R? Is it J?A P

R S J Is it E?

E I

2 Questions

3 Questions

4 Questions

1

1 1

1 1

1

0

0 0

0

0

0

letter A P R S J E I
appearances 3 2 2 2 1 1 1
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Shannon-Fano Algorithm (Continued)
§ Which brings us, e.g., to the following table:

§ The average number of questions needed to guess a letter is:

§ The rule of assigning code words to each letter is exactly the same as 
before:
• Rule 1: the number of bits attributed to each letter is equal to the 

number of questions necessary to guess it.
• Rule 2: Bits 0 or 1 are assigned based on the answers to the 

questions. More precisely, the bit number j is equal to 1 or 0 
depending on whether the answer to the question was yes or no.

letter A P R S J E I
appearances 3 2 2 2 1 1 1
questions 2 2 3 3 3 4 4

5
12

⋅2+ 5
12

⋅3+ 2
12

⋅ 4 = 10+15+8
12

=
33
12

= 2.75
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Shannon-Fano Algorithm (Continued)
§ This gives the following dictionary:

(Recall: by construction no code word is the prefix of another)

§ The number of bits necessary to represent this sequence is 

§ Therefore, the average number of bits used to represent a letter 
in the sequence “JE PARS A PARIS” is again 

letter A P R S J E I
appearances 3 2 2 2 1 1 1
questions 2 2 3 3 3 4 4
code word 11 10 011 010 001 0001 0000

5 ⋅2+ 5 ⋅3+ 2 ⋅ 4 = 33

33
12

= 2.75
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Shannon-Fano Algorithm (Continued)
§ Now, let's calculate the entropy of this sequence (with 12 letters):

§ The calculation of the entropy gives

§ which is a bit smaller than the value (2.75) that we computed on 
the previous slide.

letter A P R S J E I
appearances 3 2 2 2 1 1 1
probability 1/4 1/6 1/6 1/6 1/12 1/12 1/12

(Recall that log2(1/p) is not necessarily an integer)

𝐻 𝑋 =
1
4
log2(4) + 3 -

1
6
log2 6 + 3 -

1
12
log2 12 = 2.69 bit
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Shannon-Fano Algorithm (Continued)
§ Observation: from the point of view of the compression ratio (average 

bit number per letter) the Shannon-Fano algorithm offers a very good 
performance in the majority of cases but is not guaranteed to be 
optimal. 

§ The compression ratio may be different depending on the grouping, 
even when the rule of minimizing the difference between the groups is 
respected.

§ Example: let’s consider the sequence ABRAXAS (3x A + 1x {B,R,X,S})

Total: 3⋅1+ 4 ⋅3=15 bit Total: (3+1+1) ⋅2+ 2 ⋅3=16 bit

Is it A?

Is it B or R?A

B R

Is it X?

X S

Is it B?

Is it A or B?

Is it R?

A B Is it X?

X S

Is it A?

R
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Huffman
§ In practice, we use the Huffman algorithm, which follows 

a bottom-up approach to grouping the number of appearances

• The algorithm works with groups of letters and their total 
number of appearances

• Initially all letters are in their own group labeled with the 
number of appearances of the corresponding letter.

• Then, while there is more than one group left,
the algorithm applies the following steps:

1. Choose two groups with the smallest number of appearances
2. Replace these two groups with a new group that merges the letters 

and adds the number of appearances of the two chosen groups.

§ The Huffman algorithm always achieves the optimal compression ratio.

David Albert Huffman 
(1925 – 1999)

Professor at MIT and 
UC Santa Cruz
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Exercise: Apply Huffman's algorithm to ABRAXAS

letter A B R X S
appearances 3 1 1 1 1
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Exercise: Apply Huffman's algorithm to ABRAXAS

letter A B R X S
appearances 3 1 1 1 1

A : 3 B : 1 R : 1 X : 1 S : 1

B,R : 2

B,R,X,S : 4

A,B,R,X,S: 7

Letter Code Length App.

A 1 1 3

B 011 3 1

R 010 3 1

X 001 3 1

S 000 3 1

3⋅1+ (1+1+1+1) ⋅3=15

X,S : 2

0

1             1                       0

1              0           1              0
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Exercise: Apply Huffman's algorithm to JE PARS A PARIS

letter A P R S J E I
appearances 3 2 2 2 1 1 1
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Exercise: Apply Huffman's algorithm to JE PARS A PARIS

letter A P R S J E I
appearances 3 2 2 2 1 1 1

A : 3 P : 2 R : 2 S : 2 J : 1 E : 1 I : 1

E,I : 2

J,E,I : 3

P,R : 4

S,J,E,I : 5

A,P,R : 7

A,P,R,S,J,E,I : 12

Letter Code Length App.

A 11 2 3

P 101 3 2

R 100 3 2

S 01 2 2

J 001 3 1

E 0001 4 1

I 0000 4 1

(3+ 2) ⋅2+ (2+ 2+1) ⋅3+ 2 ⋅ 4 = 33
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Exercise: Apply Huffman's algorithm to JE PARS A PARIS

letter A P R S J E I
appearances 3 2 2 2 1 1 1

A : 3 P : 2 R : 2 S : 2 J : 1 E : 1 I : 1

E,I : 2S,J : 3P,R : 4

S,J,E,I : 5

A,P,R : 7

A,P,R,S,J,E,I : 12

Letter Code Length App.

A 11 2 3

P 101 3 2

R 100 3 2

S 011 3 2

J 010 3 1

E 001 3 1

I 000 3 1

3⋅2+ (2+ 2+ 2+1+1+1) ⋅3= 33

An alternative way 
to create the groups!
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Applications of Huffman’s Algorithm
With this algorithm, we obtain the following reductions:

§ For a text file:
• 15-25% reduction when using letters
• Up to 75% reduction when using words instead of letters

§ For a data file: 25-30% reduction (e.g., in zip files aka 
“compressed folder” in Windows)
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More about Encodings ...
§ Question: Should we always create an encoding "from 

scratch" to represent a message?
§ Answer: Not necessarily! One can use a code based on the 

probabilities of appearance of letters in the French language:

(Taken from the Universal Declaration of Human Rights)
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Optimal Encoding?
§ This is a compromise: an encoding can be optimal for the 

distribution of appearance of letters for a given language but not 
be for a particular text.

§ The example below comes from a 300-page novel that respects 
a constraint visible in this excerpt:

(excerpt from "La disparition" by Georges Perec, 1969)

Il poussa un profond soupir, s'assit dans son lit, 
s'appuyant sur son polochon. Il prit un roman, il l'ouvrit, il 
lut; mais il n'y saisissait qu'un imbroglio confus, il butait à 

tout instant sur un mot dont il ignorait la signification.
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Performance Analysis
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Performance Analysis: Definition (1/2)
§ A binary encoding (or code) is a set C of elements c1, . . . ,cn

(also called code words) that are sequences of 0 and 1 of finite 
length.
Example: { 11, 10, 011, 010, 001, 0001, 0000 }

§ We use l j to denote the length of the code word cj.
Example: l 5 =3

§ A binary encoding is prefix-free if no code word is the prefix of 
another code word. This guarantees
• that all code words are different;
• that any message formed of these code words can be 

decoded while reading.
• Example: with the encoding above, 1101010011 reads:

11  010  10  011
§ A prefix-free encoding is also called prefix code.
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Performance Analysis: Definitions (2/2)
§ The encoding C ={c1, . . . ,cn} can be used to represent a 

sequence X formed with letters from an alphabet A ={a1, . . . ,an}: 
each letter aj is represented by the code word cj of length l j.

§ Example:

§ If the letters a1, . . . ,an appear with probabilities p1, . . . ,pn in the 
sequence X, then the average code length L(C), i.e., the 
average number of bits used per letter, is given by

L(C) = p1 l 1 + . . . + pn l n

letter A P R S J E I
code word 11 10 011 010 001 0001 0000
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Shannon’s Theorem
§ For every prefix-free binary encoding C that is used to represent 

a given sequence X, the following inequality is true:

H(X ) ≤ L(C)

§ Note that this is again a threshold (like in the Sampling 
Theorem): below this threshold, it is not possible to compress 
data without losing information.

§ In order to prove Shannon’s theorem, we need the following 
inequality.
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Kraft Inequality
§ Let C ={c1, . . . , cn} a prefix-free binary encoding. 

Then the following inequality is true.

(where l j is the length of the code word cj)
Proof: 
§ Let l max be the length of the longest code word in C. 
§ Each code word of C can be represented by a node in a binary 

tree of depth l max. 
§ We call the set of all nodes below a code word ci in this tree, the 

descendants of ci.

2−l1 +...+ 2−ln ≤1
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Kraft Inequality

§ At depth l max there are 2l max leaf nodes.
§ The code word cj has 2(l max – l j ) descendants at depth l max.
§ Since the encoding is prefix-free, the descendants of distinct 

code words are all distinct. Therefore, we know that

2lmax−l1 +...+ 2lmax−ln ≤ 2lmax

2−l1 +...+ 2−ln ≤1And after dividing by 2l max we get
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Shannon’s Theorem: Proof (1/2)
§ By definition:

§ Since                         and                                              we know that 

§ And therefore:

−l j = log2(2
−l j ) log2(a)+ log2(b) = log2(a ⋅b)

H(X) ≤ L(C)
H(X) - L(C) ≤ 0
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Shannon’s Theorem: Proof (2/2)
§ Using the fact that f (x ) = log2(x ) is concave, we obtain

§ Finally, with the Kraft inequality and the fact that f (x ) = log2(x ) is 
increasing, we conclude that

H(x) – L(C) ≤ log2(1) =0

H(X ) ≤ L(C)
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Performance of Shannon-Fano and Huffman
§ We can also show that with the Shannon-Fano algorithm,

L(C)≤ H(X )+1  (bit /lettre)

§ So, its performance is close to the best performance we can hope for.

H(X)≤ L(C)≤ H(X )+1  (bit /lettre)

§ Remarks:
• The above inequality is generally pessimistic. We have seen in the 

preceding example that L(C) can be closer to H(X ), and even equal 
to H(X ) in the ideal case.

• The proof of this inequality is a little technical, so we will not do it 
here.

• The performance of the Huffman algorithm (which is optimal) is also 
within these limits. 
(Optimality proof, e.g., http://www.cs.utoronto.ca/~brudno/csc373w09/huffman.pdf)
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Summary
§ Entropy measures the "amount of information" present in a 

message.
§ For every prefix code C that is used to represent a given 

sequence X, the average code length L(C), i.e., the average 
number of bits used per letter, cannot be lower than the 
entropy, i.e., H(X ) ≤ L(C), i.e., it is not possible to compress with 
an average code length that is lower than H(X ) without losing 
information.

§ The average code length L(C) in a message that was encoded 
with the Shannon-Fano’s algorithm is 

H(X)≤ L(C)≤ H(X )+1 
§ Huffman’s algorithm is a bottom-up version of Shannon-Fano. 

It generates the optimal prefix code.


