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Information, Computation, and 
Communication

Representation of Information
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Scientific 
computation
→  numbers

Data Centers
Information 
management
→  text, photos, 
movies…

Control process
→  signals 
(measurements, 
control...)

Computation Works with Information
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§ In which ways can we represent numbers and 
letters?

§ Is it possible to build an exact representation of the 
real world?

Objectives
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§ Representation of the information

§ Representation of
• Natural Numbers (e.g., 2 4 5 6): operations/domain
• Integers (e.g., -1 -5 4 45698)
• Reals (e.g.,  3.4 4.756): fix and floating point
• Alphabets and Images

Agenda
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§ A representation is a convention (an agreement 
between people about the meaning of symbols)

§ Sets of symbols in use: ten digits (0-9), 26 letters (a-z), 
seven Roman numbers, 4000+ Chinese keys,..

§ Representation = Symbols + Interpretation

Convention

coin
en fr

i
en fr

[ai] [i]

[kɔɪn] [kwɛ]̃
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§ Minimal number of symbols needed is two.
§ All information can be represented with the help of a set 

of binary elements.
§ By convention, we use the symbols 0 and 1 to represent 

the value of a binary element.
§ Such a binary element is called binary digit or bit (b) in 

short.

Binary System and Bit

1 bit can distinguish 21 distinct pieces of information

1 bit
0

1

“Switch is off”

“Switch is on”
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§ We want to distinguish several objects. How can we 
represent the four objects below?

§ We use a sequence of two bits:

More than Two Distinct Pieces of Information

2 bits

1

0

01

1 1

0

0 0

1

2 bits can distinguish 22 distinct pieces of information

“apple”

“banana”

“carrot”

“cucumber”
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§ To represent k distinct pieces of information we 
need at ⌈log2(k)⌉ bits, where ⌈x⌉ arounds x to the 
closest integer that is higher or equal to x. 
If k=2n, then we need precisely n bits 
because log2(2n) = n log2(2) = n.

§ How many bits do we need to represent
• the 7 days of a week?
• the 10 digits? 
• the 26 letters? 

Information Stored in Sequence of Bits

n bits can distinguish 2n distinct pieces of information

7 < 8=23 => 3 bits

10 < 16=24 => 4 bits

26 < 32=25 => 5 bits

k ≤ 2n

log2(k) ≤ log2(2n)
         log2(k) ≤ n             

Pick n as the 
first integer 

larger than log2(k)
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Good practice for fast estimation:

210 = Kb (Ki) ≈ 103 = kilo (k)
220 = Mb (Mi) ≈ 106 = mega (M)
230 = Gb (Gi) ≈ 109 = giga (G)

How many elements can be approx. 
distinguished with 32 bits?

232 = 230+2 = 230 .22 ≈ 4 G = 4.109 elem.

n 2n

1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
10 1'024
20 1'048'576
30 1'073'741'824
32 4'294'967'296

n bits can distinguish 2n distinct pieces of information
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§ By convention, 
a sequence of 8 bits is called a byte (octet in French).

§ The shortcut for byte is B.
§ Recall the short of bit is b.

§ How many distinct pieces of information can be stored 
in a byte?

8 Bits = Byte

28 = 256
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§ All numbers (and, therefore, letters, sentences, etc.) 
can be represented with a sequence of binary digits.

§ Definition: a sequence of 0’s and 1’s is called 
binary pattern, e.g., 0100010111

§ We give meaning to a binary pattern by providing an 
interpretation method. 

§ Next, we will see different interpretation methods: 
one for natural numbers, one for integers, one for 
reals, etc.

Representation of Numbers
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§ The binary pattern 100101 can have different 
meaning:
• 37 (interpreted as natural number without sign)
• -5  (interpreted as number with sign)
• 4.635 (interpreted as a fixed-point number)
• 26 (interpreted as a floating-point number)
• …

Example of Different Interpretations
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§ Representation of the information

§ Representation of
• Natural Numbers (e.g., 2 4 5 6): operations/domain
• Integers (e.g., -1 -5 4 45698)
• Reals (e.g.,  3.4 4.756): fix and floating point
• Alphabets and Images

Agenda
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§ Recall, natural number are non-negative integers (i.e., 
0,1,2,3….)

§ Recall, we need an interpretation method to assign 
meaning (a number) to a binary pattern.

§ Which natural number should 0100110 represent?

§ One solution: use the positional notation 
(aka place-value notation)

How to Represent Natural Numbers?
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§ Example of an integer in base 10: 703
• The number 703 is the abbreviated notation of the 

expression: 7・102 + 0・101 + 3・100

§ The digit on the right is always multiplied by the base 
(10) raised to the power 0 

§ The power of the base increases by one from digit to 
digit, going from right to left

§ This convention of positional notation can be used 
with any base.

Positional Notation of Numbers
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§ Uses the same conventions as in base 10 (decimal)

§ Convention:
• Most significant bit (MSB) on the left (multiplied by 10n-1)
• Least significant bit (LSB) on the right (multiplied by 100=1)

PosiMonal RepresentaMon in Base 2

2021222324252627

MSB LSB
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§ Sum up the powers of two that are present in the 
binary pattern

Conversions: Binary to Decimal

1248163264128
2021222324252627

1 1010000

2 1080000 +++++++ = 11dec
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§ Idea: decompose the decimal number into a sum of 
powers of two, e.g., 1110 = 23 + 21 + 20 = 10112

§ Algorithm: repetitive division by 2

Conversions: Decimal to Binary

11 = 2.5 + 1 
= 2.(2.2 + 1) + 1
= 2.(2.(2.1 + 0) +1) + 1
= 1.23 + 0.22 + 1.21 + 1.20

= 10112

11 div 2 = 5 (+ 1 rest)
5 div 2 = 2 (+ 1 rest)
2 div 2 = 1 (+ 0 rest)

1110 = 10112
1 div 2 = 0 (+ 1 rest)

Þ 20

Þ 21

Þ 22

Þ 23

bi

Base
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§ Decimal addition

§ Addition tables in decimal

§ Binary addition

§ Addition table in binary
0+0     =   0
0+1     =   1
1+0     =   1
1+1     = 10
1+1+1 = 11

Computation with Binary Numbers: Addition

1 5 7

+ 2 6 5

1 1

4 2 2

1 1

+ 1 1

1 1

1 1 0
Carry Carry

…
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§ Decimal subtraction

§ Substraction tables in decimal

§ Binary substraction

§ Substraction table in binary
0 – 0 = 0
1 – 0 = 1
1 – 1 = 0

10 – 1 = 1   (in decimal 2 – 1 = 1)
11 – 1 = 10 (in decimal 3 – 1 = 2)

Computation: Subtraction

1 5 7

- 6 5

1

0 9 2

1 1 0

- 1 1

1 1

0 1 1
Borrow Borrow
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§ Decimal multiplication

§ Addition tables in decimal

§ Binary multiplication

§ Multiplication table in binary
0・0 = 0
0・1 = 0
1・0 = 0
1・1 = 1

Computation: Multiplication

…

1 2 3 2 ・ 3 2

3 6 9 6

2 4 6 4

3 9 4 2 4

1 0 1 1 ・ 1 1 0

1 0 1 1

1 0 1 1

0 0 0 0

1 0 0 0 0 1 0
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§ Multiplication by 10x in base 10

1024453・100 = 
102445300

§ Division by 10x in base 10

1024453 : 100 = 
10244  (53 rest)

§ Multiplication by 2x in base 2

10111011101・100 = 
1011101110100
(Multiplication by 4) 

§ Division by 2x in base 2

10111011 : 100 = 
101110    (+ 11 rest)
(Division by 4) 

Computation: Multi./Division by Multiple of Base
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§ The capacity determines how many and which items 
we can represent. 

§ All computing devices work with a fixed capacity, e.g., 
a 32-bit computer has instructions that implement 
basic operations (like addition, multiplication, etc.) 
rapidly for numbers represented with 32 bits.

§ How many items can we represent with 32 bits?
§ Covered Domain: which natural numbers can we 

represent with a given number of bits?

Capacity
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§ If we represent a binary pattern as natural number 
using the positional representation in base 2, 
the covered domain for 32 bits is 0 to 232 – 1

§ Smallest number: 0 (binary pattern with all 0s)
§ Largest number: 232 – 1 (binary pattern with 1s)

Natural Numbers: Covered Domain (1)

232 2021230231

32 bits
Note: 232 – 1 +1 = 232



ICC Module Computation  – Information Representation

25

§ Computations using this representation are correct if 
the desired result is a natural number and belongs to 
the covered domain.

§ Reasons for results outside of covered domain:
• Integer division: loss of fractional part
• Multiplication, addition, subtraction: propagation of the 

carry beyond 231

Natural Numbers: Covered Domain (2)
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010

Example with 3 bits

001

011
100

101

110

111

000

0

1

2

3
4

5

6

7

Unsigned Integers: Covered Domain and Overflow

1 1 1

+ 0 0 1

1 1 1

0 0 0

7 + 1 = 0
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Addition with 32 bits

Example of Capacity Overflow

231232 20

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(232 – 1 ) + 1 = ?0
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§ Representation of the information

§ Representation of
• Natural Numbers (e.g., 2 4 5 6): operations/domain
• Integers (e.g., -1 -5 4 45698)
• Reals (e.g.,  3.4 4.756): fix and floating point
• Alphabets and Images

Agenda
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§ The sign of a number has two states (+ or – ).
• One bit is enough to represent it. Conventions: 0 for + , 1 for –

§ What are the consequences of representing a signed number 
with a sign and absolute value (using 8 bits)?

• Pros: perfect symmetry of covered domain, two representations for 0
(+/- 0) useful in numerical analysis 

• Cons: two representations for 0 and subtraction cannot happen by 
adding an opposite sign number
E.g., representation(1) + representation(-1) ≠ representation(0)

00000001        +    10000001             =    10000010  = representation(-2)

Version 1: Representation with
Sign and Absolute Value

20212223242526sign
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§ We aim for a representation of signed integers that 
allows subtracting by adding the opposite-sign number?

§ Reminder: n bits allow the representation of 2n numbers 
(using positional representation in base 2). 
These numbers range from 0 to 2n – 1.

§ The value 2n itself cannot be represented with n bits, i.e.,
(2n − 1) + 1 =  2n (in theory)

But (2n − 1) + 1 =  0 (with n bits)
§ Consequence: the binary pattern of (2n − 1) is a good 

representation of -1 because we obtain 0 when we add 1!

Version 2: Representation using 
Capacity Overflow
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§ Properties to verify: if a is the opposite of b, then
(1) a + b = 0 
(2) – (–a) = a

§ With a capacity of n bits, 
the opposite of a number x is 2n − x, 
which is called the Two’s complement of x.

§ Verification:
(1) a + b = (2n – b) + b = 2n = 0 (with n bits)
(2) – (–a) = 2n – (2n – a ) = a

Representation of Signed Integers

§ With a capacity of n bits, 
the opposite of a number x is 2n − x, 
which is called the Two’s complement of x.
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§ Assume we represent a number with 3 bits
1 leading sign bit + 2 bits for the value

§ Assume we want to represent the number -3:
• Two’s complement of 3 (in decimal) is 23 – 3 = 5.

◦ 5 in binary is 101 (=22+20)
• So, with the Two’s Complement interpretation, 

the binary pattern 101 represents -3.
• Recall, with the unsigned interpretation 101 represents 5.

Using the Two’s Complement
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§ In order to represent –x with n bits, 
we need to compute 2n – x

§ Note that 2n – x = 2n (– 1 + 1) – x = ((2n – 1) – x ) + 1
§ ((2n – 1) – x ) is called the One’s Complement and 

is very easy to compute! 

One just needs to invert every bit of x.
§ Two’s Complement = One’s Complement + 1

Fast Computation of Two’s Complement

1 1 1 1 1 1 1 1 2n – 1

- 0 0 1 0 1 0 0 1 x

1 1 0 1 0 1 1 0 (2n – 1) – x
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Binary pattern of 11

2n--1

One’s complement of 11

Subtraction of 11

§ One’s complement of the number 11dec with 8 bits
Example: One’s Complement

-

0 0 0 0 1 0 1 1

1 1 1 1 1 1 1 1

0 0 0 0 1 0 1 1

1 1 1 1 0 1 0 0
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Binary pattern of 11

One’s complement of 11

Addition of 1

Two’s complement of 11
= opposite of 11 = -11

Addition of 11

Example: Two’s Complement (+ Check)

0 in n bits

+

=

+

1111111

0 0 0 0 1 0 1 1

1 1 1 1 0 1 0 0

0 0 0 0 0 0 0 1

1 1 1 1 0 1 0 1

0 0 0 0 1 0 1 1

0 0 0 0 0 0 0 0

1 Check
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Decimal Number Binary Number

Number 11 11dec 00001011

Complement of 11
(represent –11) 28 – 11dec = 245dec 11110101

Example: Two’s Complement

1’s complement+1

Black arrow: - 27 + 26 + 25 + 24 + 22 + 20 = - 128 + 117 dec = -11 dec

28 - x
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§ MSB (most significant bit) = sign

§ Overflow: incorrect change of sign bit

Covered Domain with Two’s Complement
OK

-1      0 

Max positiveMin negative

Overflow

Min  positive = 00000…0000 = 0

Max positive = 01111…1111 = 2(n-1)-1

Min negative = 10000…0000 = -2(n-1)

Max negative = 11111…1111 = -1
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s
i
g
n

Example: 
on 3 bits

001

010

011
100

101

110

111

000

0

1

2

3
-4

-3

-2

-1

Signed Integers: Covered Domain and Overflow

capa
city

Min  pos. = 000 = 0
Max pos. = 011 = 3
Min neg. = 100 = -4
Max neg. = 111 = -1
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§ We represent a positive integer using 
positional representation in base 2.

§ We represent a negative integer by 
its two’s complement.

Summary
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§ How do you know which representation is used 
(e.g., in an exam)? Part of the instructions!

§ What tells the computer which representation it 
should use? The type!

§ Integer Types in C++:
• C++ uses the positional representation in base 2 to 

represent positive integers in the type (unsigned) int
• C++ uses the Two’s Complement to represent negative 

integers in the type int.

Which Representation?
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§ In C++ integers are represented with 32 bits by default
§ What does the following program print?

Should You Care About the Covered Domain?

unsigned int i(0);
i = i - 1;
cout << "0 - 1 gives " << i << endl;

int j(2147483647);
j = j + 1;
cout << "2'147'483'647 + 1 gives " << j << 
endl;
// 231 - 1 = 2'147'483’647
// 232 - 1 = 4’294’967’295
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§ Representation of the information

§ Representation of
• Natural Numbers (e.g., 2 4 5 6): operations/domain
• Integers (e.g., -1 -5 4 45698)
• Reals (e.g.,  3.4 4.756): fixed and floating point
• Alphabets and Images

Agenda
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§ How to we represent real numbers in base 10? 
We use a decimal point and negative powers of 10, 
e.g., 3.14 is a shortcut for 3・100 + 1・10-1 + 4・10-2

§ Same idea for binary: negative powers of 2, e.g.,
1.011 is a shortcut for 1・20 + 0・2-1 + 1・2-2 + 1・2-3

(Recall: 2-1=0.5, 2-2=0.25, 2-3=0.125)
Therefore, 1.011bin represent 1.375dec

Representation of Real Numbers
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§ How to represent 3.625dec in binary?
• Step 1: convert 3dec to binary → 11bin
• Step 2: convert 0.625dec to binary

§ Algorithm: repetitive multiplication with 2

Example of Conversion

0.625 
= 2-1.(1 + 0.25)
= 2-1.(1 + 2-1.(0 + 0.5))
= 2-1.(1 + 2-1.(0 + 2-1.(1 + 0))
= 1.2-1 + 0.2-2 + 1.2-3

= .101

0.625・2 = 1.25 = 1 + 0.25
0.25 ・2 = 0.5  = 0 + 0.5

Þ 2-1

Þ 2-2

Þ 2-3

bi

0.5  ・2 = 1    = 1 + 0
0.625dec = 0.101bin

3.625dec = 11.101bin
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§ Represent 0.1dec in binary:
Another Example

0.1 ・ 2 = 0.2 = 0 + 0.2

0.2 ・ 2 = 0.4 = 0 + 0.4

0.4 ・ 2 = 0.8 = 0 + 0.8

0.8 ・ 2 = 1.6 = 1 + 0.6

0.6 ・ 2 = 1.2 = 1 + 0.2

0.2 ・ 2 = 0.4 = 0 + 0.4

0.4 ・ 2 = 0.8 = 0 + 0.8

… … … … … … … … …

0.1dec = 0.0 0011 0011 0011…

How do we represent 1/3 in decimal? 0.333333….
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§ We can only use a finite number of digits (when we 
write down a number or on a computer), which leads 
to a loss of precision.

§ With n digits we can represent only 2n numbers 
precisely (without loss of precision) but in any 
interval, e.g., from 0 to 1, there are infinitely many 
real numbers. So, most of these numbers are 
represented with an error. 

Consequence of Finite Number of Digits
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§ Absolute error
𝜹𝒙 = | 𝒙𝒆𝒙𝒂𝒄𝒕 − 𝒙𝒂𝒑𝒑𝒓𝒐𝒙|

§ Relative error
𝜹𝒙
𝒙
=
| 𝒙𝒆𝒙𝒂𝒄𝒕 − 𝒙𝒂𝒑𝒑𝒓𝒐𝒙|

𝒙𝒆𝒙𝒂𝒄𝒕

§ The error depends on (i) number of bits, (ii) the size 
of the interval, and (iii) the chosen representation.

Discretization* Error

*aka rounding, approximation, quantization error
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§ Assume the number 2.99999 is represented by the 
number 2.
• Absolut error: |2.99999 – 2| = 0.99999 ≈ 1
• Relative error: |2.99999 – 2|/2.99999 ≈ 1/3 ≈ 33%

§ Assume the number 2000.99999 is represented by 
the number 2000. 
• Absolut error: |2000.99999 – 2000| = 0.99999 ≈ 1
• Relative error: |2000.99999 – 2000|/2000.99999 ≈ 1/2000 

≈ 0.005%

Example Discretization Error
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1. Fixed-point representation: the fractional point is at a fixed
position and the distance between any two precisely 
representable numbers is constant. 

• Absolute error bounded by a constant
• Relative error is not uniform

2. Floating-point representation: the number of bits before and 
after the fractional point can change between precisely 
representable numbers, and the distance between two 
precisely representable numbers can change as well.

• Absolute error is not uniform
• Relative error bounded by a constant

Representations of Real Numbers

1 2 3 4

1 2 3 4 5 6
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§ Numbers that cannot be represented precisely are 
truncated, i.e., bits that do not fit are cut off. 

§ Example: 
• Assume we present the numbers from 0 to 3.75 with 4 bits 

(2 before and 2 after the fractional point). 
• Only 16 numbers can be represented without error: 

0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2,…, 3.75. 
• The number 0.625dec = 0.101bin is then represented by 

0.10bin = 0.5dec with an absolute error of 0.125dec and a 
relative error of 0.125/0.625=20%

Representative Number
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§ This domain can be put on another scale with factor α 
and shifted by offset β to represent decimal numbers.

§ For n bits, the 2n values represented are uniformly 
spread in the new interval [MIN, MAX] and separated 
by the quantity α.

Fixed-Point Representation

MIN = β MAX= α.(2n-1) + β
a
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§ 3 bits to represent decimal numbers in [1,4.5]
Example: Fixed-Point Representation

MIN = 1 MAX = 0.5・(8-1) + 1 = 4.5
0.5

Pattern 000 001 010 011 100 101 110 111

In dec. 0 1 2 3 4 5 6 7

Repr. 1 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Max. absolute error = 0.5

⍺ = 0.5
β = 1

This relative error distribution is not acceptable for many problems.
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§ Inspiration: scientific notation in base 10 with a fixed 
number of significant digits
• A small number: 2.4345 ・10-10

• A large number: 4.5313 ・108

• Normalized number: 1 digit before the fractional point 
◦ 356.722・100 = 3.56722・102 (normalized)

§ The relative error is bounded by the number of 
significant digits.

Representation with Uniform Relative Error
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= a scientific notation in base 2
§ The floating-point representation in base 2 includes 

three parts that share the numbers of available bits:
• the sign, 
• the exponent of base 2 of the normalized number,
• the fractional part of the normalized number called the 

mantissa.

Floating-Point Representation

− 1.010101100 % 2!"!"!"
sign mantissa

exponent
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§ The particularity of base 2: the most significant digit 
of the normalized number is a constant and always 
equal to 1. It is, therefore, implicit and does not need 
to be stored.

Floating-Point Representation

− 1.010101100 % 2!"!"!"
sign mantissa

exponent

[https://en.wikipedia.org/wiki/Double-precision_floating-point_format]
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§ Let’s assume we need to present 20.8510 with 8 bits (5 
for the mantissa, 3 for the exponent, ignoring the sign)

§ Let’s convert 20.85 into binary first:
• 2010 in binary is 10100
• 0.8510 in binary is 0.1101100111..
• 20.8510 in binary is 10100.1101100111…

§ Normalize the number (1 digit before frac. point):
10100.1101100111… = 1.01001101100111… ! 24

§ Convert exponent: 4 in binary is 100.
§ Fit into available bits: 1.01001 ! 2100

Example of Floating-Point Representation

mantissa
exponent

10100.1 = 24 + 22 + 2-1 = 20.5 Binary pattern: 10001001
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§ Example with 2 bits for the unsigned exponent and 
2 bits for the mantissa. We have the form
The relative error is at most 2-2 = ¼.

Example with Unsigned Exponent

4 8 16
1 1.25 1.5 1.752.0 2.5 3.0 3.5 4        5          6         7 8                 10                12                 14

1 2

Interval [1-2) [2-4) [4-8) [8-16)

Exp. 00 01 10 11

M
an

tis
sa

00 00 00 00

01 01 01 01

10 10 10 10

11 11 11 11

1. 𝑑𝑑 $ 2!!

Exponent ranges 
from 0 to 3
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Interval [0.25
-0.5)

[0.5-1) [1-2) [2-4)

Exp. 10 11 00 01

M
an

tis
sa

00 00 00 00

01 01 01 01

10 10 10 10

11 11 11 11

§ Example with 2 bits for the signed exponent and 
2 bits for the mantissa. We have the form
The relative error is at most 2-2 = ¼.

Example with Signed Exponent

1 2 40.25    0.5

1. 𝑑𝑑 $ 2!!

𝐵𝑖𝑡	𝑝𝑎𝑡𝑡𝑒𝑟𝑛: 1101 ⇒ 1.01	 0 2!! = 1.01 0 2"! = 0.101 = 0.62510

Exponent ranges 
from -2 to 1
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Interval [0-
0.5)

[0.5-1) [1-2) [2-4)

Exp. 10 11 00 01

M
an

tis
sa

00 00 00 00

01 01 01 01

10 10 10 10

11 11 11 11

§ To include 0 we treat the lowest power of 2 
(denoted by P) as a special case and use it to 
cover the interval [0, 2p].

Representing 0 in Floating-Point Representation

1 2 40 0.5

Exponent ranges 
from -2 to 1
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§ Fixed-Point Representation:
• Integer representation scaled to the desired range with factor 

and offset. Done manually by user!
• Distance between any two precisely representable numbers is 

constant 
§ Floating-Point Representation
• Scientific representation in base 2 (with sign, exponent and 

mantissa)
• The relative error is bound by 2-n, where n is the size of the 

mantissa
• The number 0 requires special treatment
• Types in C++: float (32 bits) and double (64 bits)

Summary
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§ Recall the discretization (aka rounding) error is the 
rule, i.e., most real numbers are represented with an 
error.

§ This can influence your computation.

Why do I need to know that? 
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A Problematic Example
§ Quadratic equation a・x2 + b・x + c = 0 with the decimal 

values a=0.25, b=0.1, c=0.01
§ Discriminant Δ = b2 - 4ac = 0.12 - 4・0.25・0.1 = 0

but if a, b, and c are represented as floating-point 
numbers with 64 bits, then Δ = 1.73・10-18

§ Why?
• 4 and 0.25 are exactly represented, their product is 1
• On the contrary, decimals 0.1 and 0.01 are approximated

§ Consequence: 4・0.25・0.01 ≠ 0.1・0.1

double a = 0.1 * 0.1; //0.01
double b = 4 * 0.25 * 0.01;// 0.01
if ( a == b) { cout << ”a is equal to b" << endl;
} else {      cout << ”a is not equal to b" << endl; }

./float_equal
a is not equal to b
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§ The equality test must be redefined to allow a 
tolerance ε around the theoretical value.

§ Two values are equal if their distance is smaller than ε

| result – theoretical_value | < ε

• ε depends on (i) the theoretical value and (ii) the way to 
obtain the result

Consequence of Rounding Errors

ee
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§ The result is different according to the order of the operations. 
The addition is no longer associative:

§ There are values a, b, c such that (a + b) + c ≠ a + (b +c)
§ Example with a standard on 64 bits having 52 bits of mantissa: 

§ Good practice: first add the small numbers between them 
before adding them to the larger ones

Consequence of Rounding Errors

./double_sum
sum1 != sum2

(1 + 2-53) + 2-53 à 1 + 2-53 à 1
1 + (2-53 + 2-53) à 1 + 2-52 which is representable

double small(pow(2,-53));
double sum1((1 +  small) + small);
double sum2( 1 + (small  + small));
if (sum1 == sum2) { cout << "sum1 == sum2" << endl;
} else {            cout << "sum1 != sum2" << endl; }
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§ For a given problem and its algorithmic solution, it is 
important to ask the following questions:
• What precision do I need for my results?
• What is the effect of the algorithm on the precision of the 

results?
• What is the maximum available precision on the target 

machine?
§ In the case of insufficient precision, one has to 

reconsider the algorithmic solution, or adjust the 
representation in order to obtain the desired 
precision.

Controlling the Accuracy is Possible
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A binary pattern 10000011 can have many meanings:
1. Unsigned number: 10000011bin = 27 + 21 + 20 = 130
2. Signed number: 10000011bin = - (27 – 21 – 20) = - 125
3. Fixed-point number with 6 bits before and 2 after:

100000.11bin = 25 + 2-1 + 2-2 = 32.75
4. Floating-point number with 3 bits for the exponent in 

2’s complement and 5 for the mantissa :
2100・1.00011 = 0.000100011= 0.068359375

Summary

-4

Shortcut for 
-(28 – (27 + 21 + 20))
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§ Representation of the information

§ Representation of
• Natural Numbers (e.g., 2 4 5 6): operations/domain
• Integers (e.g., -1 -5 4 45698)
• Reals (e.g.,  3.4 4.756): fix and floating point
• Alphabets and Images

Agenda
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String (char, string), Pictures and Beyond
§ Everything is map to numbers using different 

convention (standards)
§ E.g., there are standards (ASCII) to map letters (A, B, 

C…) to numbers: A=65, B=66, C=67… (7 bit for each 
letter)

§ An image is a grid of pixel (each represented by four 
numbers with 8 bits)
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Letters/Characters
§ ASCII (American Standard 

Code for Information 
Interchange) codes 
represent letters using 7 
bits, value 0-127) 
http://www.asciitable.com

§ ISO 8859 Latin1 extends 
ASCII to 8 bits (128-256) to 
present accented 
characters lower and upper 
case of western languages: 
é è ê à ä ö

§ UNICODE integrates other 
languages, > 109’000 
characters for 93 writings 
including Chinese. A string is a sequence of letters, each encoded with a number.

http://www.asciitable.com/
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Example in C++
#include <iostream>
using namespace std;

int main() {
 int  integer(65);
 char character(65);
 cout << integer << endl;
 cout << character << endl;
}
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Images

pixel

pixel 
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§ Each pixel stores the intensity of three 
primary components whose combination 
creates a space of colors.

§ RGB encoding  (Red, Green, Blue)
• Additive synthesis of the colors: 
• Black=(0,0,0)
• Red=(255,0,0)
• Green=(0,255,0)
• Blue=(0,0,255)
• White=(255,255,255)
• Gray levels when three components are equal 

§ Sometimes completed by a 4th component 
called alpha (transparency) for graphical 
applications.

Images
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Images

RGB-encoding:  1 pixel = 32 bits = 4 x 8 bits = 4 numbers between 0-255: 
Transparency Red Green Blue

94b74c?

4d4359? 
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§ Numbers in base 16 (24) = 4 bits
Hexadecimal Numbers

Decimal Hexadecimal Binary

0 0 0000

1 1 0001

2 2 0010

.. .. ..

9 9 1001

10 a 1010

11 b 1011

12 c 1100

13 d 1101

14 e 1110

15 f 1111

16 10 10000

94b74c =
Red:     94 = 1001_0100 = 148
Green: b7 = 1011_0111 = 183
Blue:    4c = 0100_1100 =   76

94b74c?
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§ We have seen representation of 
• natural numbers (unsigned int), 
• integers (int), 
• fractional numbers (float or double), 
• characters (char), and 
• images (using discrete sampling).

§ A representation is a human convention of 
interpretation of a set of signs. Its power is directly 
connected to the number of people who share it, 
hence the importance of standards (e.g., code ASCII, 
UTF).

Summary
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§ Assume we present unsigned integers with four bits. 
What is the result of 5+14?
• What range can we represent with four bits?
• Does 19 fit into this range?

A. 19
B. 16
C. 3
D. -16

Question 1
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§ What is the two’s complement representation (in 
binary) of the number 19 using 8 bits?
• Recall definition: 2n – x
• Alternative computation?

A. 00010010
B. 00010011
C. 11101100
D. 11101101

Question 2
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§ Assume we present signed integers with four bits 
(including the sign). Which of the following 
computations are possible results in this system? 
(Multiple answers are possible)

A. 4 + 3 = 7 
B. 4 + 4 = 0
C. 4 + 4 = -8
D. 4 - 5 = -1
E. -4 - 5 = -9

Question 3
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§ Assume the binary pattern 01010010 represents a 
fractional number in which the first 4 bits represent 
the (signed) exponent and the last 4 bits represent 
the mantissa. What is the corresponding decimal 
number?

A. 15
B. 36
C. 72
D. 82

Question 4


