
ICC Module Computation – Information Representation

1

Information, Computation, and
Communication

Representation of Information

ICC Module Computation – Information Representation

2

Scientific
computation
→ numbers

Data Centers
Information
management
→ text, photos,
movies…

Control process
→ signals
(measurements,
control...)

Computation Works with Information

ICC Module Computation – Information Representation

3

§ In which ways can we represent numbers and
letters?

§ Is it possible to build an exact representation of the
real world?

Objectives

ICC Module Computation – Information Representation

4

§ Representation of the information

§ Representation of
• Natural Numbers (e.g., 2 4 5 6): operations/domain
• Integers (e.g., -1 -5 4 45698)
• Reals (e.g., 3.4 4.756): fix and floating point
• Alphabets and Images

Agenda

ICC Module Computation – Information Representation

5

§ A representation is a convention (an agreement
between people about the meaning of symbols)

§ Sets of symbols in use: ten digits (0-9), 26 letters (a-z),
seven Roman numbers, 4000+ Chinese keys,..

§ Representation = Symbols + Interpretation

Convention

coin
en fr

i
en fr

[ai] [i]

[kɔɪn] [kwɛ]̃

ICC Module Computation – Information Representation

6

§ Minimal number of symbols needed is two.
§ All information can be represented with the help of a set

of binary elements.
§ By convention, we use the symbols 0 and 1 to represent

the value of a binary element.
§ Such a binary element is called binary digit or bit (b) in

short.

Binary System and Bit

1 bit can distinguish 21 distinct pieces of information

1 bit
0

1

“Switch is off”

“Switch is on”

ICC Module Computation – Information Representation

7

§ We want to distinguish several objects. How can we
represent the four objects below?

§ We use a sequence of two bits:

More than Two Distinct Pieces of Information

2 bits

1

0

01

1 1

0

0 0

1

2 bits can distinguish 22 distinct pieces of information

“apple”

“banana”

“carrot”

“cucumber”

ICC Module Computa5on – Informa5on Representa5on

8

§ To represent k distinct pieces of information we
need at ⌈log2(k)⌉ bits, where ⌈x⌉ arounds x to the
closest integer that is higher or equal to x.
If k=2n, then we need precisely n bits
because log2(2n) = n log2(2) = n.

§ How many bits do we need to represent
• the 7 days of a week?
• the 10 digits?
• the 26 letters?

Information Stored in Sequence of Bits

n bits can distinguish 2n distinct pieces of information

7 < 8=23 => 3 bits

10 < 16=24 => 4 bits

26 < 32=25 => 5 bits

k ≤ 2n

log2(k) ≤ log2(2n)
 log2(k) ≤ n

Pick n as the
first integer

larger than log2(k)

ICC Module Computation – Information Representation

9

Good practice for fast estimation:

210 = Kb (Ki) ≈ 103 = kilo (k)
220 = Mb (Mi) ≈ 106 = mega (M)
230 = Gb (Gi) ≈ 109 = giga (G)

How many elements can be approx.
distinguished with 32 bits?

232 = 230+2 = 230 .22 ≈ 4 G = 4.109 elem.

n 2n

1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
10 1'024
20 1'048'576
30 1'073'741'824
32 4'294'967'296

n bits can distinguish 2n distinct pieces of information

ICC Module Computation – Information Representation

10

§ By convention,
a sequence of 8 bits is called a byte (octet in French).

§ The shortcut for byte is B.
§ Recall the short of bit is b.

§ How many distinct pieces of information can be stored
in a byte?

8 Bits = Byte

28 = 256

ICC Module Computation – Information Representation

11

§ All numbers (and, therefore, letters, sentences, etc.)
can be represented with a sequence of binary digits.

§ Definition: a sequence of 0’s and 1’s is called
binary pattern, e.g., 0100010111

§ We give meaning to a binary pattern by providing an
interpretation method.

§ Next, we will see different interpretation methods:
one for natural numbers, one for integers, one for
reals, etc.

Representation of Numbers

ICC Module Computation – Information Representation

12

§ The binary pattern 100101 can have different
meaning:
• 37 (interpreted as natural number without sign)
• -5 (interpreted as number with sign)
• 4.635 (interpreted as a fixed-point number)
• 26 (interpreted as a floating-point number)
• …

Example of Different Interpretations

ICC Module Computation – Information Representation

13

§ Representation of the information

§ Representation of
• Natural Numbers (e.g., 2 4 5 6): operations/domain
• Integers (e.g., -1 -5 4 45698)
• Reals (e.g., 3.4 4.756): fix and floating point
• Alphabets and Images

Agenda

ICC Module Computation – Information Representation

14

§ Recall, natural number are non-negative integers (i.e.,
0,1,2,3….)

§ Recall, we need an interpretation method to assign
meaning (a number) to a binary pattern.

§ Which natural number should 0100110 represent?

§ One solution: use the positional notation
(aka place-value notation)

How to Represent Natural Numbers?

ICC Module Computation – Information Representation

15

§ Example of an integer in base 10: 703
• The number 703 is the abbreviated notation of the

expression: 7・102 + 0・101 + 3・100

§ The digit on the right is always multiplied by the base
(10) raised to the power 0

§ The power of the base increases by one from digit to
digit, going from right to left

§ This convention of positional notation can be used
with any base.

Positional Notation of Numbers

ICC Module Computation – Information Representation

16

§ Uses the same conventions as in base 10 (decimal)

§ Convention:
• Most significant bit (MSB) on the left (multiplied by 10n-1)
• Least significant bit (LSB) on the right (multiplied by 100=1)

PosiMonal RepresentaMon in Base 2

2021222324252627

MSB LSB

ICC Module Computation – Information Representation

17

§ Sum up the powers of two that are present in the
binary pattern

Conversions: Binary to Decimal

1248163264128
2021222324252627

1 1010000

2 1080000 +++++++ = 11dec

ICC Module Computa5on – Informa5on Representa5on

18

§ Idea: decompose the decimal number into a sum of
powers of two, e.g., 1110 = 23 + 21 + 20 = 10112

§ Algorithm: repetitive division by 2

Conversions: Decimal to Binary

11 = 2.5 + 1
= 2.(2.2 + 1) + 1
= 2.(2.(2.1 + 0) +1) + 1
= 1.23 + 0.22 + 1.21 + 1.20

= 10112

11 div 2 = 5 (+ 1 rest)
5 div 2 = 2 (+ 1 rest)
2 div 2 = 1 (+ 0 rest)

1110 = 10112
1 div 2 = 0 (+ 1 rest)

Þ 20

Þ 21

Þ 22

Þ 23

bi

Base

ICC Module Computation – Information Representation

19

§ Decimal addition

§ Addition tables in decimal

§ Binary addition

§ Addition table in binary
0+0 = 0
0+1 = 1
1+0 = 1
1+1 = 10
1+1+1 = 11

Computation with Binary Numbers: Addition

1 5 7

+ 2 6 5

1 1

4 2 2

1 1

+ 1 1

1 1

1 1 0
Carry Carry

…

ICC Module Computation – Information Representation

20

§ Decimal subtraction

§ Substraction tables in decimal

§ Binary substraction

§ Substraction table in binary
0 – 0 = 0
1 – 0 = 1
1 – 1 = 0

10 – 1 = 1 (in decimal 2 – 1 = 1)
11 – 1 = 10 (in decimal 3 – 1 = 2)

Computation: Subtraction

1 5 7

- 6 5

1

0 9 2

1 1 0

- 1 1

1 1

0 1 1
Borrow Borrow

ICC Module Computation – Information Representation

21

§ Decimal multiplication

§ Addition tables in decimal

§ Binary multiplication

§ Multiplication table in binary
0・0 = 0
0・1 = 0
1・0 = 0
1・1 = 1

Computation: Multiplication

…

1 2 3 2 ・ 3 2

3 6 9 6

2 4 6 4

3 9 4 2 4

1 0 1 1 ・ 1 1 0

1 0 1 1

1 0 1 1

0 0 0 0

1 0 0 0 0 1 0

ICC Module Computation – Information Representation

22

§ Multiplication by 10x in base 10

1024453・100 =
102445300

§ Division by 10x in base 10

1024453 : 100 =
10244 (53 rest)

§ Multiplication by 2x in base 2

10111011101・100 =
1011101110100
(Multiplication by 4)

§ Division by 2x in base 2

10111011 : 100 =
101110 (+ 11 rest)
(Division by 4)

Computation: Multi./Division by Multiple of Base

ICC Module Computation – Information Representation

23

§ The capacity determines how many and which items
we can represent.

§ All computing devices work with a fixed capacity, e.g.,
a 32-bit computer has instructions that implement
basic operations (like addition, multiplication, etc.)
rapidly for numbers represented with 32 bits.

§ How many items can we represent with 32 bits?
§ Covered Domain: which natural numbers can we

represent with a given number of bits?

Capacity

ICC Module Computation – Information Representation

24

§ If we represent a binary pattern as natural number
using the positional representation in base 2,
the covered domain for 32 bits is 0 to 232 – 1

§ Smallest number: 0 (binary pattern with all 0s)
§ Largest number: 232 – 1 (binary pattern with 1s)

Natural Numbers: Covered Domain (1)

232 2021230231

32 bits
Note: 232 – 1 +1 = 232

ICC Module Computation – Information Representation

25

§ Computations using this representation are correct if
the desired result is a natural number and belongs to
the covered domain.

§ Reasons for results outside of covered domain:
• Integer division: loss of fractional part
• Multiplication, addition, subtraction: propagation of the

carry beyond 231

Natural Numbers: Covered Domain (2)

ICC Module Computation – Information Representation

26

010

Example with 3 bits

001

011
100

101

110

111

000

0

1

2

3
4

5

6

7

Unsigned Integers: Covered Domain and Overflow

1 1 1

+ 0 0 1

1 1 1

0 0 0

7 + 1 = 0

ICC Module Computation – Information Representation

27

Addition with 32 bits

Example of Capacity Overflow

231232 20

1 1

0 1

0 0

1 1

(232 – 1) + 1 = ?0

ICC Module Computation – Information Representation

28

§ Representation of the information

§ Representation of
• Natural Numbers (e.g., 2 4 5 6): operations/domain
• Integers (e.g., -1 -5 4 45698)
• Reals (e.g., 3.4 4.756): fix and floating point
• Alphabets and Images

Agenda

ICC Module Computation – Information Representation

29

§ The sign of a number has two states (+ or –).
• One bit is enough to represent it. Conventions: 0 for + , 1 for –

§ What are the consequences of representing a signed number
with a sign and absolute value (using 8 bits)?

• Pros: perfect symmetry of covered domain, two representations for 0
(+/- 0) useful in numerical analysis

• Cons: two representations for 0 and subtraction cannot happen by
adding an opposite sign number
E.g., representation(1) + representation(-1) ≠ representation(0)

00000001 + 10000001 = 10000010 = representation(-2)

Version 1: Representation with
Sign and Absolute Value

20212223242526sign

ICC Module Computation – Information Representation

30

§ We aim for a representation of signed integers that
allows subtracting by adding the opposite-sign number?

§ Reminder: n bits allow the representation of 2n numbers
(using positional representation in base 2).
These numbers range from 0 to 2n – 1.

§ The value 2n itself cannot be represented with n bits, i.e.,
(2n − 1) + 1 = 2n (in theory)

But (2n − 1) + 1 = 0 (with n bits)
§ Consequence: the binary pattern of (2n − 1) is a good

representation of -1 because we obtain 0 when we add 1!

Version 2: Representation using
Capacity Overflow

ICC Module Computation – Information Representation

31

§ Properties to verify: if a is the opposite of b, then
(1) a + b = 0
(2) – (–a) = a

§ With a capacity of n bits,
the opposite of a number x is 2n − x,
which is called the Two’s complement of x.

§ Verification:
(1) a + b = (2n – b) + b = 2n = 0 (with n bits)
(2) – (–a) = 2n – (2n – a) = a

Representation of Signed Integers

§ With a capacity of n bits,
the opposite of a number x is 2n − x,
which is called the Two’s complement of x.

ICC Module Computation – Information Representation

32

§ Assume we represent a number with 3 bits
1 leading sign bit + 2 bits for the value

§ Assume we want to represent the number -3:
• Two’s complement of 3 (in decimal) is 23 – 3 = 5.

◦ 5 in binary is 101 (=22+20)
• So, with the Two’s Complement interpretation,

the binary pattern 101 represents -3.
• Recall, with the unsigned interpretation 101 represents 5.

Using the Two’s Complement

ICC Module Computation – Information Representation

33

§ In order to represent –x with n bits,
we need to compute 2n – x

§ Note that 2n – x = 2n (– 1 + 1) – x = ((2n – 1) – x) + 1
§ ((2n – 1) – x) is called the One’s Complement and

is very easy to compute!

One just needs to invert every bit of x.
§ Two’s Complement = One’s Complement + 1

Fast Computation of Two’s Complement

1 1 1 1 1 1 1 1 2n – 1

- 0 0 1 0 1 0 0 1 x

1 1 0 1 0 1 1 0 (2n – 1) – x

ICC Module Computation – Information Representation

34

Binary pattern of 11

2n--1

One’s complement of 11

Subtraction of 11

§ One’s complement of the number 11dec with 8 bits
Example: One’s Complement

-

0 0 0 0 1 0 1 1

1 1 1 1 1 1 1 1

0 0 0 0 1 0 1 1

1 1 1 1 0 1 0 0

ICC Module Computation – Information Representation

35

Binary pattern of 11

One’s complement of 11

Addition of 1

Two’s complement of 11
= opposite of 11 = -11

Addition of 11

Example: Two’s Complement (+ Check)

0 in n bits

+

=

+

1111111

0 0 0 0 1 0 1 1

1 1 1 1 0 1 0 0

0 0 0 0 0 0 0 1

1 1 1 1 0 1 0 1

0 0 0 0 1 0 1 1

0 0 0 0 0 0 0 0

1 Check

ICC Module Computation – Information Representation

36

Decimal Number Binary Number

Number 11 11dec 00001011

Complement of 11
(represent –11) 28 – 11dec = 245dec 11110101

Example: Two’s Complement

1’s complement+1

Black arrow: - 27 + 26 + 25 + 24 + 22 + 20 = - 128 + 117 dec = -11 dec

28 - x

ICC Module Computation – Information Representation

37

§ MSB (most significant bit) = sign

§ Overflow: incorrect change of sign bit

Covered Domain with Two’s Complement
OK

-1 0

Max positiveMin negative

Overflow

Min positive = 00000…0000 = 0

Max positive = 01111…1111 = 2(n-1)-1

Min negative = 10000…0000 = -2(n-1)

Max negative = 11111…1111 = -1

ICC Module Computation – Information Representation

38

s
i
g
n

Example:
on 3 bits

001

010

011
100

101

110

111

000

0

1

2

3
-4

-3

-2

-1

Signed Integers: Covered Domain and Overflow

capa
city

Min pos. = 000 = 0
Max pos. = 011 = 3
Min neg. = 100 = -4
Max neg. = 111 = -1

ICC Module Computation – Information Representation

39

§ We represent a positive integer using
positional representation in base 2.

§ We represent a negative integer by
its two’s complement.

Summary

ICC Module Computation – Information Representation

40

§ How do you know which representation is used
(e.g., in an exam)? Part of the instructions!

§ What tells the computer which representation it
should use? The type!

§ Integer Types in C++:
• C++ uses the positional representation in base 2 to

represent positive integers in the type (unsigned) int
• C++ uses the Two’s Complement to represent negative

integers in the type int.

Which Representation?

ICC Module Computation – Information Representation

41

§ In C++ integers are represented with 32 bits by default
§ What does the following program print?

Should You Care About the Covered Domain?

unsigned int i(0);
i = i - 1;
cout << "0 - 1 gives " << i << endl;

int j(2147483647);
j = j + 1;
cout << "2'147'483'647 + 1 gives " << j <<
endl;
// 231 - 1 = 2'147'483’647
// 232 - 1 = 4’294’967’295

ICC Module Computation – Information Representation

42

§ Representation of the information

§ Representation of
• Natural Numbers (e.g., 2 4 5 6): operations/domain
• Integers (e.g., -1 -5 4 45698)
• Reals (e.g., 3.4 4.756): fixed and floating point
• Alphabets and Images

Agenda

ICC Module Computation – Information Representation

43

§ How to we represent real numbers in base 10?
We use a decimal point and negative powers of 10,
e.g., 3.14 is a shortcut for 3・100 + 1・10-1 + 4・10-2

§ Same idea for binary: negative powers of 2, e.g.,
1.011 is a shortcut for 1・20 + 0・2-1 + 1・2-2 + 1・2-3

(Recall: 2-1=0.5, 2-2=0.25, 2-3=0.125)
Therefore, 1.011bin represent 1.375dec

Representation of Real Numbers

ICC Module Computation – Information Representation

44

§ How to represent 3.625dec in binary?
• Step 1: convert 3dec to binary → 11bin
• Step 2: convert 0.625dec to binary

§ Algorithm: repetitive multiplication with 2

Example of Conversion

0.625
= 2-1.(1 + 0.25)
= 2-1.(1 + 2-1.(0 + 0.5))
= 2-1.(1 + 2-1.(0 + 2-1.(1 + 0))
= 1.2-1 + 0.2-2 + 1.2-3

= .101

0.625・2 = 1.25 = 1 + 0.25
0.25 ・2 = 0.5 = 0 + 0.5

Þ 2-1

Þ 2-2

Þ 2-3

bi

0.5 ・2 = 1 = 1 + 0
0.625dec = 0.101bin

3.625dec = 11.101bin

ICC Module Computation – Information Representation

45

§ Represent 0.1dec in binary:
Another Example

0.1 ・ 2 = 0.2 = 0 + 0.2

0.2 ・ 2 = 0.4 = 0 + 0.4

0.4 ・ 2 = 0.8 = 0 + 0.8

0.8 ・ 2 = 1.6 = 1 + 0.6

0.6 ・ 2 = 1.2 = 1 + 0.2

0.2 ・ 2 = 0.4 = 0 + 0.4

0.4 ・ 2 = 0.8 = 0 + 0.8

… … … … … … … … …

0.1dec = 0.0 0011 0011 0011…

How do we represent 1/3 in decimal? 0.333333….

ICC Module Computation – Information Representation

46

§ We can only use a finite number of digits (when we
write down a number or on a computer), which leads
to a loss of precision.

§ With n digits we can represent only 2n numbers
precisely (without loss of precision) but in any
interval, e.g., from 0 to 1, there are infinitely many
real numbers. So, most of these numbers are
represented with an error.

Consequence of Finite Number of Digits

ICC Module Computation – Information Representation

47

§ Absolute error
𝜹𝒙 = | 𝒙𝒆𝒙𝒂𝒄𝒕 − 𝒙𝒂𝒑𝒑𝒓𝒐𝒙|

§ Relative error
𝜹𝒙
𝒙
=
| 𝒙𝒆𝒙𝒂𝒄𝒕 − 𝒙𝒂𝒑𝒑𝒓𝒐𝒙|

𝒙𝒆𝒙𝒂𝒄𝒕

§ The error depends on (i) number of bits, (ii) the size
of the interval, and (iii) the chosen representation.

Discretization* Error

*aka rounding, approximation, quantization error

ICC Module Computation – Information Representation

48

§ Assume the number 2.99999 is represented by the
number 2.
• Absolut error: |2.99999 – 2| = 0.99999 ≈ 1
• Relative error: |2.99999 – 2|/2.99999 ≈ 1/3 ≈ 33%

§ Assume the number 2000.99999 is represented by
the number 2000.
• Absolut error: |2000.99999 – 2000| = 0.99999 ≈ 1
• Relative error: |2000.99999 – 2000|/2000.99999 ≈ 1/2000

≈ 0.005%

Example Discretization Error

ICC Module Computation – Information Representation

49

1. Fixed-point representation: the fractional point is at a fixed
position and the distance between any two precisely
representable numbers is constant.

• Absolute error bounded by a constant
• Relative error is not uniform

2. Floating-point representation: the number of bits before and
after the fractional point can change between precisely
representable numbers, and the distance between two
precisely representable numbers can change as well.

• Absolute error is not uniform
• Relative error bounded by a constant

Representations of Real Numbers

1 2 3 4

1 2 3 4 5 6

ICC Module Computation – Information Representation

50

§ Numbers that cannot be represented precisely are
truncated, i.e., bits that do not fit are cut off.

§ Example:
• Assume we present the numbers from 0 to 3.75 with 4 bits

(2 before and 2 after the fractional point).
• Only 16 numbers can be represented without error:

0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2,…, 3.75.
• The number 0.625dec = 0.101bin is then represented by

0.10bin = 0.5dec with an absolute error of 0.125dec and a
relative error of 0.125/0.625=20%

Representative Number

ICC Module Computation – Information Representation

51

§ This domain can be put on another scale with factor α
and shifted by offset β to represent decimal numbers.

§ For n bits, the 2n values represented are uniformly
spread in the new interval [MIN, MAX] and separated
by the quantity α.

Fixed-Point Representation

MIN = β MAX= α.(2n-1) + β
a

ICC Module Computation – Information Representation

52

§ 3 bits to represent decimal numbers in [1,4.5]
Example: Fixed-Point Representation

MIN = 1 MAX = 0.5・(8-1) + 1 = 4.5
0.5

Pattern 000 001 010 011 100 101 110 111

In dec. 0 1 2 3 4 5 6 7

Repr. 1 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Max. absolute error = 0.5

⍺ = 0.5
β = 1

This relative error distribution is not acceptable for many problems.

ICC Module Computation – Information Representation

53

§ Inspiration: scientific notation in base 10 with a fixed
number of significant digits
• A small number: 2.4345 ・10-10

• A large number: 4.5313 ・108

• Normalized number: 1 digit before the fractional point
◦ 356.722・100 = 3.56722・102 (normalized)

§ The relative error is bounded by the number of
significant digits.

Representation with Uniform Relative Error

ICC Module Computation – Information Representation

54

= a scientific notation in base 2
§ The floating-point representation in base 2 includes

three parts that share the numbers of available bits:
• the sign,
• the exponent of base 2 of the normalized number,
• the fractional part of the normalized number called the

mantissa.

Floating-Point Representation

− 1.010101100 % 2!"!"!"
sign mantissa

exponent

ICC Module Computation – Information Representation

55

§ The particularity of base 2: the most significant digit
of the normalized number is a constant and always
equal to 1. It is, therefore, implicit and does not need
to be stored.

Floating-Point Representation

− 1.010101100 % 2!"!"!"
sign mantissa

exponent

[https://en.wikipedia.org/wiki/Double-precision_floating-point_format]

ICC Module Computation – Information Representation

56

§ Let’s assume we need to present 20.8510 with 8 bits (5
for the mantissa, 3 for the exponent, ignoring the sign)

§ Let’s convert 20.85 into binary first:
• 2010 in binary is 10100
• 0.8510 in binary is 0.1101100111..
• 20.8510 in binary is 10100.1101100111…

§ Normalize the number (1 digit before frac. point):
10100.1101100111… = 1.01001101100111… ! 24

§ Convert exponent: 4 in binary is 100.
§ Fit into available bits: 1.01001 ! 2100

Example of Floating-Point Representation

mantissa
exponent

10100.1 = 24 + 22 + 2-1 = 20.5 Binary pattern: 10001001

ICC Module Computation – Information Representation

57

§ Example with 2 bits for the unsigned exponent and
2 bits for the mantissa. We have the form
The relative error is at most 2-2 = ¼.

Example with Unsigned Exponent

4 8 16
1 1.25 1.5 1.752.0 2.5 3.0 3.5 4 5 6 7 8 10 12 14

1 2

Interval [1-2) [2-4) [4-8) [8-16)

Exp. 00 01 10 11

M
an

tis
sa

00 00 00 00

01 01 01 01

10 10 10 10

11 11 11 11

1. 𝑑𝑑 $ 2!!

Exponent ranges
from 0 to 3

ICC Module Computation – Information Representation

58

Interval [0.25
-0.5)

[0.5-1) [1-2) [2-4)

Exp. 10 11 00 01

M
an

tis
sa

00 00 00 00

01 01 01 01

10 10 10 10

11 11 11 11

§ Example with 2 bits for the signed exponent and
2 bits for the mantissa. We have the form
The relative error is at most 2-2 = ¼.

Example with Signed Exponent

1 2 40.25 0.5

1. 𝑑𝑑 $ 2!!

𝐵𝑖𝑡	𝑝𝑎𝑡𝑡𝑒𝑟𝑛: 1101 ⇒ 1.01	 0 2!! = 1.01 0 2"! = 0.101 = 0.62510

Exponent ranges
from -2 to 1

ICC Module Computation – Information Representation

59

Interval [0-
0.5)

[0.5-1) [1-2) [2-4)

Exp. 10 11 00 01

M
an

tis
sa

00 00 00 00

01 01 01 01

10 10 10 10

11 11 11 11

§ To include 0 we treat the lowest power of 2
(denoted by P) as a special case and use it to
cover the interval [0, 2p].

Representing 0 in Floating-Point Representation

1 2 40 0.5

Exponent ranges
from -2 to 1

ICC Module Computation – Information Representation

60

§ Fixed-Point Representation:
• Integer representation scaled to the desired range with factor

and offset. Done manually by user!
• Distance between any two precisely representable numbers is

constant
§ Floating-Point Representation
• Scientific representation in base 2 (with sign, exponent and

mantissa)
• The relative error is bound by 2-n, where n is the size of the

mantissa
• The number 0 requires special treatment
• Types in C++: float (32 bits) and double (64 bits)

Summary

ICC Module Computation – Information Representation

61

§ Recall the discretization (aka rounding) error is the
rule, i.e., most real numbers are represented with an
error.

§ This can influence your computation.

Why do I need to know that?

ICC Module Computation – Information Representation

62

A Problematic Example
§ Quadratic equation a・x2 + b・x + c = 0 with the decimal

values a=0.25, b=0.1, c=0.01
§ Discriminant Δ = b2 - 4ac = 0.12 - 4・0.25・0.1 = 0

but if a, b, and c are represented as floating-point
numbers with 64 bits, then Δ = 1.73・10-18

§ Why?
• 4 and 0.25 are exactly represented, their product is 1
• On the contrary, decimals 0.1 and 0.01 are approximated

§ Consequence: 4・0.25・0.01 ≠ 0.1・0.1

double a = 0.1 * 0.1; //0.01
double b = 4 * 0.25 * 0.01;// 0.01
if (a == b) { cout << ”a is equal to b" << endl;
} else { cout << ”a is not equal to b" << endl; }

./float_equal
a is not equal to b

ICC Module Computation – Information Representation

63

§ The equality test must be redefined to allow a
tolerance ε around the theoretical value.

§ Two values are equal if their distance is smaller than ε

| result – theoretical_value | < ε

• ε depends on (i) the theoretical value and (ii) the way to
obtain the result

Consequence of Rounding Errors

ee

ICC Module Computation – Information Representation

64

§ The result is different according to the order of the operations.
The addition is no longer associative:

§ There are values a, b, c such that (a + b) + c ≠ a + (b +c)
§ Example with a standard on 64 bits having 52 bits of mantissa:

§ Good practice: first add the small numbers between them
before adding them to the larger ones

Consequence of Rounding Errors

./double_sum
sum1 != sum2

(1 + 2-53) + 2-53 à 1 + 2-53 à 1
1 + (2-53 + 2-53) à 1 + 2-52 which is representable

double small(pow(2,-53));
double sum1((1 + small) + small);
double sum2(1 + (small + small));
if (sum1 == sum2) { cout << "sum1 == sum2" << endl;
} else { cout << "sum1 != sum2" << endl; }

ICC Module Computation – Information Representation

65

§ For a given problem and its algorithmic solution, it is
important to ask the following questions:
• What precision do I need for my results?
• What is the effect of the algorithm on the precision of the

results?
• What is the maximum available precision on the target

machine?
§ In the case of insufficient precision, one has to

reconsider the algorithmic solution, or adjust the
representation in order to obtain the desired
precision.

Controlling the Accuracy is Possible

ICC Module Computation – Information Representation

66

A binary pattern 10000011 can have many meanings:
1. Unsigned number: 10000011bin = 27 + 21 + 20 = 130
2. Signed number: 10000011bin = - (27 – 21 – 20) = - 125
3. Fixed-point number with 6 bits before and 2 after:

100000.11bin = 25 + 2-1 + 2-2 = 32.75
4. Floating-point number with 3 bits for the exponent in

2’s complement and 5 for the mantissa :
2100・1.00011 = 0.000100011= 0.068359375

Summary

-4

Shortcut for
-(28 – (27 + 21 + 20))

ICC Module Computation – Information Representation

67

§ Representation of the information

§ Representation of
• Natural Numbers (e.g., 2 4 5 6): operations/domain
• Integers (e.g., -1 -5 4 45698)
• Reals (e.g., 3.4 4.756): fix and floating point
• Alphabets and Images

Agenda

ICC Module Computation – Information Representation

68

String (char, string), Pictures and Beyond
§ Everything is map to numbers using different

convention (standards)
§ E.g., there are standards (ASCII) to map letters (A, B,

C…) to numbers: A=65, B=66, C=67… (7 bit for each
letter)

§ An image is a grid of pixel (each represented by four
numbers with 8 bits)

ICC Module Computation – Information Representation

69

Letters/Characters
§ ASCII (American Standard

Code for Information
Interchange) codes
represent letters using 7
bits, value 0-127)
http://www.asciitable.com

§ ISO 8859 Latin1 extends
ASCII to 8 bits (128-256) to
present accented
characters lower and upper
case of western languages:
é è ê à ä ö

§ UNICODE integrates other
languages, > 109’000
characters for 93 writings
including Chinese. A string is a sequence of letters, each encoded with a number.

http://www.asciitable.com/

ICC Module Computation – Information Representation

70

Example in C++
#include <iostream>
using namespace std;

int main() {
 int integer(65);
 char character(65);
 cout << integer << endl;
 cout << character << endl;
}

ICC Module Computation – Information Representation

71

Images

pixel

pixel

ICC Module Computation – Information Representation

72

§ Each pixel stores the intensity of three
primary components whose combination
creates a space of colors.

§ RGB encoding (Red, Green, Blue)
• Additive synthesis of the colors:
• Black=(0,0,0)
• Red=(255,0,0)
• Green=(0,255,0)
• Blue=(0,0,255)
• White=(255,255,255)
• Gray levels when three components are equal

§ Sometimes completed by a 4th component
called alpha (transparency) for graphical
applications.

Images

ICC Module Computation – Information Representation

73

Images

RGB-encoding: 1 pixel = 32 bits = 4 x 8 bits = 4 numbers between 0-255:
Transparency Red Green Blue

94b74c?

4d4359?

ICC Module Computation – Information Representation

74

§ Numbers in base 16 (24) = 4 bits
Hexadecimal Numbers

Decimal Hexadecimal Binary

0 0 0000

1 1 0001

2 2 0010

..

9 9 1001

10 a 1010

11 b 1011

12 c 1100

13 d 1101

14 e 1110

15 f 1111

16 10 10000

94b74c =
Red: 94 = 1001_0100 = 148
Green: b7 = 1011_0111 = 183
Blue: 4c = 0100_1100 = 76

94b74c?

ICC Module Computation – Information Representation

75

§ We have seen representation of
• natural numbers (unsigned int),
• integers (int),
• fractional numbers (float or double),
• characters (char), and
• images (using discrete sampling).

§ A representation is a human convention of
interpretation of a set of signs. Its power is directly
connected to the number of people who share it,
hence the importance of standards (e.g., code ASCII,
UTF).

Summary

ICC Module Computation – Information Representation

79

§ Assume we present unsigned integers with four bits.
What is the result of 5+14?
• What range can we represent with four bits?
• Does 19 fit into this range?

A. 19
B. 16
C. 3
D. -16

Question 1

ICC Module Computation – Information Representation

80

§ What is the two’s complement representation (in
binary) of the number 19 using 8 bits?
• Recall definition: 2n – x
• Alternative computation?

A. 00010010
B. 00010011
C. 11101100
D. 11101101

Question 2

ICC Module Computation – Information Representation

81

§ Assume we present signed integers with four bits
(including the sign). Which of the following
computations are possible results in this system?
(Multiple answers are possible)

A. 4 + 3 = 7
B. 4 + 4 = 0
C. 4 + 4 = -8
D. 4 - 5 = -1
E. -4 - 5 = -9

Question 3

ICC Module Computation – Information Representation

82

§ Assume the binary pattern 01010010 represents a
fractional number in which the first 4 bits represent
the (signed) exponent and the last 4 bits represent
the mantissa. What is the corresponding decimal
number?

A. 15
B. 36
C. 72
D. 82

Question 4

