
ICC (SV) – Mini-project
Barbara Jobstmann, Jamila Sam, Samuel Teeporten

Amir Bouchaoui, Miguel Crespo
(Version 1.1)

This document uses color and contains clickable links. It is best viewed in digital
format. It is very important to read it carefully and entirely and to understand
the data structures provided as well as the role of each function before you
start coding.

1 Introduction

A phylogenetic tree aims to convey the relationships between different entities over time.
It shows the evolutionary proximity between different entities, in terms of hereditary char-
acteristics (such as the morphologic traits, DNA/RNA sequences, amino acid sequences,
etc.). Figure 1 shows a phylogenetic tree of living things, based on RNA data and proposed
by Carl Woese. It shows the separation of bacteria, archaea, and eukaryotes. The entities
that are close to each other in this tree have similar RNA sequences.

Figure 1: Phylogenetic tree of living things https://en.wikipedia.org/wiki/File:
Phylogenetic_tree.svg

The phylogenetic trees are important as they help us understand how different organisms
are linked by evolution. They show how species have changed and branched out over
time. By examining these trees, scientists can determine which species have common
ancestors, follow gene evolution, and observe adaptation schemes. These trees are used

1

https://en.wikipedia.org/wiki/File:Phylogenetic_tree.svg
https://en.wikipedia.org/wiki/File:Phylogenetic_tree.svg

in many domains like biology, ecology, and medical research to study the diversity and
the connections in the living world.

For instance, in epidemiology, such trees help track how diseases spread and evolve
over time. By analyzing the genetic relationships between different strains of a virus
or bacteria, scientists can understand how infections spread in communities and identify
potential sources of outbreaks.

In cancer research, phylogenetic trees help researchers understand the genetic changes
that lead to tumor development and progression. By studying the evolutionary history of
cancer cells within a tumor, scientists can identify key mutations and pathways involved in
cancer growth, which can inform the development of targeted therapies and personalized
treatment approaches.

2 Objectives and Example

This project aims to create phylogenetic trees using the two following methods of hierar-
chical regrouping:

1. WPGMA (Weighted Pair Group Method with Arithmetic Mean)

2. UPGMA (Unweighted Pair Group Method with Arithmetic Mean)

We illustrate the WPGMA algorithm using a small example. The UPGMA algorithm is
very similar and will be explained later. Imagine we have four organisms with different
genetic codes, i.e., DNA sequences consisting of the four DNA bases Adenine (A), Cyto-
sine (C), Guanine (G), and Thymine (T). Since the genetic code of an entity can be very
large one usually focuses on a part of interest to compare the organisms (e.g., one gene or
less). We will call a classifiable element like a part of a DNA sequence a taxon. Assume
we would like to analyze the relationship of the following four DNA fragments (T1, T2,
T3, T4).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
T1 C A T A G A C C T G A C G C C A G C T C
T2 C A T A G A C C C G C C A T G A G C T C
T3 C G T A G A C T G G G C G C C A G C T C
T4 C C T A G A C G T C G C G G C A G T C C

The starting point of this clustering method is a distance matrix that shows the distance
between any two entities. We compute the distance between two entities by comparing
them letter by letter. E.g., the distance between Taxon T1 and Taxon T2 is 5 because
they differ in Positions 8, 10, 12, 13, and 14. Computing the pairwise distances for the
four taxa gives the distance matrix shown in Table 1.

Initially, each entity is in its own cluster. The algorithm proceeds in steps. In each step,
two clusters with a minimal distance are merged to form a new cluster. The distance of
the new cluster to any other cluster C is the average between the distances of the two
merged clusters to C. For instance, in our example, initially, each taxon is in its own
cluster, and the minimal distance between two clusters is 4, which is the distance between

2

Table 1: Distance between
T1, T2, T3, and T4

T1 T2 T3 T4
T1 0 5 4 7
T2 5 0 7 10
T3 4 7 0 7
T4 7 10 7 0

Table 2: Distances be-
tween T1T3, T2, and T4

T1T3 T2 T4
T1T3 0 6 7

T2 6 0 10
T4 7 10 0

Table 3: Distances be-
tween T1T3T2 and T4

T1T3T2 T4
T1T3T2 0 8.5

T4 8.5 0

T1 and T3. We create a new cluster merging T1 and T3. The distance between the new
cluster T1T3 and T2 is the average of the distance between T1 and T2, which is 5, and
the distance between T3 and T2, which is 7. So, the distance between T1T3 and T2 is
(5 + 7)/2 = 6. The distance between T1T3 and T4 is (7 + 7)/2 = 7. Table 2 shows the
new distance matrix after merging T1 and T3. In the next step, we merge Cluster T1T3
with T2 and obtain the distance matrix shown in Table 3. We will continue merging
clusters until we obtain a single cluster.

The phylogenetic tree is built by following the clustering steps (grouping the closest
clusters) and distributing the distances over the different branches. Merging T1 and T3
gives us a tree with two branches, one for T1 and one for T3. The distance between T1
and T3 is 4, which will be evenly distributed over these two branches, so each branch is
assigned the value 2. Figure 2 shows the tree corresponding to the first merging step.
The next step, which merges T1T3 with T2 extends the tree by one level with T1 and T3
on one side and T2 on the other (see Figure 3). The distance between T1T3 and T2 is
6, so each of these two new branches is assigned the value 3. Since the left subtree (with
T1 and T3) already has value 2, we only need to add 1 to get to a total of 3. In the final
step, the cluster T1T3T2 is merged with T4 which gives another layer in the tree. The
distance between these two clusters is 8.5, which gives 4.25 for each new branch. Figure 4
shows the final tree generated for T1, T2, T3, and T4 following the WPGMA algorithm.

h = 2

T1

2

T3

2

Figure 2: Tree after stage 1

h = 3

h = 2

T1

2

T3

2

1

T2

3

Figure 3: Tree after stage 2

h = 4.25

h = 3

h = 2

T1

2

T3

2

1

T2

3

1.25

T4

4.25

Figure 4: Final tree

3

3 Structure and code

This project is divided into three parts:

1. Implementation of debugging functions.

2. Initializing the data structures representing a phylogenetic tree and computing the
distance matrix.

3. Building the phylogenetic trees.

Within each part of the project, you need to implement several functions. Utility types
and functions are provided in the files utils.[hpp][.cpp]. The data types and structures
to be used are defined in the file phylogenetics.hpp.

It is important to review the types and functions included in the file
phylogenetics.hpp and to understand their roles.

Note that if we do not use the directive using namespace std; we must
change the identifiers cout, vector etc. by adding std:: as a prefix (i.e.,
std::cout, std::vector, std::endl). This is commonly done in C++
and the provided material is written this way (we will come back to this in
the next semester).

You need to fill in the code in the file phylogenetics.cpp. Precise instructions are given
in this document. The prototypes of the functions to be implemented are in the file
phylogenetics.hpp. They must not be modified.

Note that in addition to the mandatory functions, you are free to define any additional
functions or data structures that you consider relevant.

Be careful: any additional function or data type must be written in the
file phylogenetics.cpp because this is the only file that will be
submitted.

It is a good practice to create clean and modular code. In the appendix (Section A), at
the end of the document, you can find a description of the difference between UPGMA
and WGPMA.

Note that in the examples of code (or program executions) in this document,
you may see an arrow like this ↪→ . It refers to a line break added only in
this document to make the example easier to read. The new line does not
exist in the original snippet.

4

3.1 Utility functions

A taxon, such as a protein, can be a very long sequence of characters. It can therefore
become tedious to enter as program input at every execution.

The file utils.hpp provides the utility function readSequencesFromFile(std::string
↪→ filename) for reading character sequences from a file named filename. You can
find examples of how to use this function in the provided file sources/main.cpp.

The file phylogenetics.hpp also includes the type Taxon, which is a string, and the
enumeration type AlgoType, which is used to select the algorithm that we want to use
for building the phylogenetic tree.

3.2 Included test files

We include some data in the folder data to test your code. Each text file (.txt) in this
directory will correspond to a group of taxa (taxons) to be classified. You are free to add
your own files for testing purposes but they will not be submitted.

Test and verification of edge cases

It is common practice to check the input parameters of a function; for example, to verify
that a table is not empty, and/or has correct dimensions,…These tests generally make
debugging easier, and help you to reason about the behavior of a function.

We will suppose that the arguments of the functions are correct by default
and that it is not necessary to make such verifications. In the cases in which it is
necessary, you should use the following type of C++ instruction to stop the program if a
parameter is invalid:

if (condition) throw std::invalid_argument(" an error message ");

If the condition is true, the code will display the error message in the terminal and will
stop the program. Otherwise, it will continue its execution.

As an example, if a pointer parameter called key of a function called f should not be
nullptr for the function to work correctly, you can write

if (key == nullptr) throw std::invalid_argument(" key must not be
↪→ nullptr in function f ");

at the beginning of the body of f. Note that, in general, this type of instruction can be
placed anywhere in the program. This mechanism is called exception handling and will
be studied in detail in the next semester.

To use the exceptions mechanism, it is necessary to include the library
exception.

5

It is your responsibility to verify that the program behaves correctly. It is crucial to
check carefully at each stage that you are producing the correct data before
moving on to the next stage, which will use that data.

To help you with the verification, we provide a few examples of tests in the files main.cpp
and unit_test.cpp (the tests of the latter file are invoked in the file main.cpp). You
can use these tests and fill them in to ensure that everything works properly. Note that
the code in main.cpp and unit_test.cpp will not be graded. Modify them as you need.

To test the code that you have written for the different parts, you can call the function
run_unit_tests(part) in which part is replaced by the number of the part that you
want to check. For example, if you want to test your code for Part 3 of the project, call
the function run_unit_tests(3) in the file main.cpp.

IMPORTANT The included tests are not exhaustive. It is recommended that you
fill them in, especially for handling edge cases. Finally, it is highly recommended to
familiarize yourself from the beginning with the usage of the debugger (see the tutorial
of week 8). Add breakpoints inside the functions to stop the code during the execution
and to examine the involved values.

6

https://iccsv.epfl.ch/series-prog/serie8-1.php
https://iccsv.epfl.ch/series-prog/serie8-1.php

4 Implementation

This project has three parts. In each of them, you need to implement some functions in
the file phylogenetics.cpp.

4.1 Part 1

The aim of the first part of the project is to implement the functions that will be used to
print the content of the required data structures.

A cluster is a node in a phylogenetic tree. For example, the tree of Figure 3, will be
represented using the following five clusters:

taxon : ””
id : -1
height : 3.0
left: ...
right : ...
size : 3taxon : ””

id : -1
height : 2.0
left: ...
right : ...
size : 2taxon : ”T1”

id : 0
height : 0.0
left: ...
right : ...
size : 1

2 taxon : ”T3”
id : 1
height : 0.0
left: ...
right: ..
size : 1

22

1 taxon : ”T2”
id : 2
height : 0.0
left: ...
right : ...
size : 1

3

Figure 5: Phylogenetic tree : detailed view of the nodes (the information in red on the
links between the nodes is not part of the representation of the Cluster)

The data structure Cluster represents a cluster. It must not be modified and contains
the following information:

• id: An integer identifier of the node; this identifier is important only in the terminal
nodes (leaves); its value will be -1 otherwise;

• taxon: A string of type Taxon identifying the leaf nodes. Concretely, the value of
this field is:

– the name of the taxon (e.g., an RNA sequence) for the leaf nodes;
– an empty string for the non-leaf nodes.

• left & right: Pointers to the two nodes aggregated by the current node, a pointer
for the left node and another for the right one;

• height: the height of the node that gives its distance to the leaf nodes, as explained
in the introduction example. For example, the distance separating T1 and T3 is four
(according to the distance matrix in Table 1), and the height of the node T1+T3 is
four divided by two (distributing the distance equally on the two branches).

• size: the size of the node is defined as the number of nodes it aggregates. In
Figure 3, the node aggregating T1 (id=0) and T3 (id=1) has a size of two; the one

7

which aggregates this node (of size 2) with the node T2 (of size 1) has as size of
three. Note that the size cannot be negative and is an integer.

Before continuing, take a look at the provided type aliases (in
phylogenetics.hpp). You will see that a tree (Tree) is a vector of
Cluster. The data structure Tree is used jointly with the data structure
DistanceMatrix, which stores the distances between any two Cluster in
the tree vector. The order in these data structures is important: the
entry [i][j] in a DistanceMatrix gives the distance between the entry i
and the entry j of the corresponding Tree.

You are then required to implement some useful functions for printing the contents of
data structures. Their use will help you when debugging your program. Each of the
following functions returns a string formatted according to a precise specification. These
strings can then be printed to see the contents of the corresponding data structures.

Please make sure that your output matches the one provided in the handout
and in the unit tests.

Functions not yet implemented contain the line NotImplemented(); which
will cause an error if the function is executed. Remove this line when you
implement a function.

Here is the list of functions to implement:

• std::string toString(const DistanceMatrix& matrix, bool verbose = false
↪→); When verbose is false, the return string is constructed so that the values
of the distance matrix are separated by a space, and a line break is made between
each line (the character '\n' represents a line break). When verbose = true, the
string represents the distance matrix as a set of lines with the following format:
i− j = disti,j , where i is a row number, j a column number, and disti,j is the value
of the entry [i][j] of the matrix. This entry must be converted to a string using the
provided function double_to_string (which limits the number of decimal points).
The part of the function test_part1 dedicated to this function and called in main
must produce the following output for the matrix dist (the toString method is
called twice, once with the verbose parameter set to false and again with it set
to true):

8

======= Testing toString for DistanceMatrix =======
======= printing in non verbose mode by default ====
0 17 21 31 23
17 0 30 34 21
21 30 0 28 39
31 34 28 0 43
23 21 39 43 0
======= printing in verbose mode ====
0 - 0 = 0
0 - 1 = 17
0 - 2 = 21
0 - 3 = 31
0 - 4 = 23
1 - 0 = 17
1 - 1 = 0
1 - 2 = 30
1 - 3 = 34
1 - 4 = 21
2 - 0 = 21
2 - 1 = 30
2 - 2 = 0
2 - 3 = 28
2 - 4 = 39
3 - 0 = 31
3 - 1 = 34
3 - 2 = 28
3 - 3 = 0
3 - 4 = 43
4 - 0 = 23
4 - 1 = 21
4 - 2 = 39
4 - 3 = 43
4 - 4 = 0
======= End testing toString for DistanceMatrix =======

• std::string toString(const ClusterIdPair& pair); returns a string represen-
tation of a ClusterIdPair using the format id1-id2\n, where id1 is the first
element of pair, and id2 the second. The '\n' character is a line break in C++.
For example, given that pair is initialized with 2 and 3, printint its corresponding
string should produce:

2-3

followed by a line break.

• std::string clusterToString(const Cluster* cluster, bool verbose = false
↪→); this function creates recursively a string representation of a Cluster: if it
is a terminal node, it will output the corresponding taxon, if not, it will output
the string representation of its left child followed by its right one, separated by

9

a comma and between parenthesis. If verbose is true, the taxon will be printed
in its entirety followed by the values of the fields id, height, and size, separated
by commas and surrounded by brackets ([]) (see the execution trace below for an
exact description of the expected format). The value of the height field must be
converted to a string using the provided function double_to_string. If verbose is
false, a shorter representation will be produced by concatenating the word Taxon
with the integer identifier of the taxon. If cluster is a nullptr, the function
will return an empty string. The function test_part1 called in main provides the
expected result for a network similar to the one in Figure 3 :

======= Testing clusterToString =======
======= printing in non verbose mode by default ====
((Taxon_0,Taxon_2),Taxon_1)
======= printing in verbose mode ====
((ACGTAACCTTGGG[i:0,h:0,s:1],GTAGTAGTAGTAG[i:2,h:0,s:1])[i:-1,h:2,s

↪→ :2],AGGGTCTATATGT[i:1,h:0,s:1])[i:-1,h:3,s:3]
======= End testing clusterToString =======

• std::string toString(const Tree& tree, bool verbose = false); returns the
string representations of all the clusters of the given tree separated by a line break.
If verbose is true, taxa (taxons) in the tree will be displayed in verbose mode. The
function test_part1 called by main must generate the following display for the trees
tree1 and tree2 :

======= Testing toString for Tree =======
printing tree1:

======= printing in verbose mode ====
ACGTAACCTTGGG[i:0,h:0,s:1];
AGGGTCTATATGT[i:1,h:0,s:1];
======= printing in non verbose mode ====
Taxon_0;
Taxon_1;
printing tree2:

======= printing in verbose mode ====
((ACGTAACCTTGGG[i:0,h:0,s:1],GTAGTAGTAGTAG[i:2,h:0,s:1])[i:-1,h:2,s

↪→ :2],AGGGTCTATATGT[i:1,h:0,s:1])[i:-1,h:3,s:3];
======= printing in non verbose mode ====
((Taxon_0,Taxon_2),Taxon_1);
======= End testing toString for Tree =======

10

Tests

To test this part, you can use the provided main program. Open the file main.cpp and
you will see the provided tests. Uncomment the relevant lines to test your code.
The function test_part1 gives you an example of simple tests that you can complete as
you wish for the first part of the project. In addition, the lines towards the end of the
function main execute the function run_unit_tests, which is defined in unit_test.cpp
Open the file unit_test.cpp and review the function run_unit_tests. You will see that
it calls different provided tests for each part of the project.

For the first part of the project, you can call the function run_unit_tests(1), which will
execute just the tests for this part. The execution must display the message [Passed]
for all tests. If a test fails, you will see a message saying [Failed] and the difference
between the expected and the computed value.

For example:

test_distanceMatrixToString

[Passed]
[Passed]
[Passed]
[Passed]

showing that the function toString(const DistanceMatrix&) has passed the tests.

If not, it will display something like:

test_distanceMatrixToString

[Failed]
expected:
0 17 21
17 0 30
21 30 0
found:
0 17 21 17 0 30 21 30 0

indicating that toString has produced the output shown after found, instead of the
correct one shown after expected.

11

4.2 Part 2

Note: if ptr_c is a pointer on a cluster and m is the name of one of the
cluster’s fields, then the notations (*ptr_c).m and ptr_c->m are equivalent
in C++.

In the second part of the project, you will implement the functions needed to initialize
the data structure representinga phylogenetic tree and to compute the distance matrix.
These functions are:

• int calculateDistance(const Taxon& seq1, const Taxon& seq2); compute the
distance between the taxon seq1 and the taxon seq2. This distance will be the
number of times seq1[i] is different from seq2[i] for all i. The two taxa (the
two taxons) can have different lengths: the extra characters will also be counted as
differences.

• Tree initTree(std::vector<Taxon> taxa); returns an initial tree built using the
taxa passed as a parameter. For each taxon of the group taxa, a dynamically
created cluster will be added to the tree. The clusters will be numbered in the
order of construction. This number will be the integer identifier of a cluster. The
numbering starts with zero.

• void deleteTree(Tree& tree); which empties a given tree and frees the mem-
ory associated to all of its clusters. This function should work with no crash
even if some of the clusters in tree are nullptr. Be careful, an incomplete
deletion can lead to errors later, in the last part of the project.

• DistanceMatrix initDistanceMatrix(const Tree& tree); builds and returns
the distance matrix corresponding to the tree passed as a parameter. For each
pair (i,j) of clusters in the tree, the entry [i][j] of the matrix will be computed
as the distance between the taxa (between the taxons) in the clusters i and j.
The distance is computed using the function calculateDistance. This function
only makes sense if the tree passed as a parameter has only leaf nodes and if none
of the leaves is nullptr, which must be ensured using the exception mechanism.
You should write a function isLeafNodeTree that tests this first condition. This
function will return true only if the size of all the clusters inside the tree is one.

• void eraseColumn(DistanceMatrix& distances, size_t c) erases the column
with the index c from a distance matrix; c should be compatible with the actual
size of the matrix, otherwise an exception should be thrown;

• void eraseRow(DistanceMatrix& distances, size_t r) erases the row with the
index r from the distance matrix; r should be compatible with the actual size of
the matrix, otherwise an exception should be thrown.

Note: To remove an element at position p in a vector v use the following instruction:

v.erase(v.begin() + p);

12

Attention, if the instruction v.erase(v.begin() + p); is used in an
iteration, it must be a classic iteration (for (size_t i(..);..;..))
and not an iteration over a set of values (for (auto val :...)). In a
for (auto val :...) loop, if the size of the collection is changed while
iterating over it, the program will crash (explanations will be provided on
next semester!).

Tests

Use the function test_part2 to test this part of the project. The expected outputs for
this part are given in the Appendix A.2.1. You can also run the corresponding unit tests
of this part by calling run_unit_tests(2)
If your code is correct, you should only see [Passed] messages.

4.3 Part 3

In the third part, you should implement the phylogenetic tree building algorithms. The
enumerated type AlgoType will be used to indicate the variant to be used (UGPMA or
WGPMA).

Here are the functions that you should implement (for each one of them, you will find an
execution example in the function test_part3):

• ClusterIdPair minimumDistance(const DistanceMatrix& distances); returns
the pair of distinct Clusters separated by the smallest distance in the matrix
distances. The matrix must be traversed line by line and for each line, column
by column. If the minimal distance is present several times, only the pair with
the smallest indexes (the first encountered) will be returned. For example, for the
distance matrix:

{
{0, 1, 2},
{1, 0 , 1},
{2, 1 , 0}

}

The pair {0,1} should be returned. This means that the two closest Clusters (in
terms of distance) are those occupying Position 0 and Position 1 in the phylogenetic
tree corresponding to this distance matrix. This function will only work correctly
if the parameter is a non-empty square matrix. Use the exception mechanism to
guarantee this condition.
Indication: the largest possible value for a double is given by
std::numeric_limits<double>::max().

• void mergeClusters(const ClusterIdPair& pair, Tree& tree, DistanceMatrix
↪→ & distances, AlgoType algorithm = WPGMA); merges the pair of Clusters

13

identified by pair in the tree tree and adapts the distance matrix distances
accordingly. The cluster obtained by the merging operation will have the data as
described by the example in Figure 5.
You should use the same way of coding the identifiers (either the integer identifier
or the one of type Taxon) as in this example. The merge is done so that in the
tree tree, the node with the position pair[0] is replaced with the new node
obtained by merging, and the node in the position pair[1] disappears from the
tree. The matrix of distance will be adapted consequently: for each possible index
p, the entries [pair[0]][p] and [p][pair[0]] will be re-evaluated according to
the specific modalities of the algorithm used (average of distances or average of
distances weighted by node size, depending on whether WPGMA or UPGMA is used,
see the difference between the two in the appendix). For example, the first call
of the function test_merge_clusters, called by test_part3, should produce the
following output:
======= Testing mergeCluster (WPGMA) =======

The pair to merge:
0-1

Before merging:

Tree:

ACGTAACCTTGGG[i:0,h:0,s:1];
ACGGTCTATTGGA[i:1,h:0,s:1];
GTAGTAGTAGTAG[i:2,h:0,s:1];

Distance matrix:

0 6 11
6 0 11
11 11 0

After merging clusters:

Tree:

(ACGTAACCTTGGG[i:0,h:0,s:1],ACGGTCTATTGGA[i:1,h:0,s:1])[i:-1,h:3,s

↪→ :2];
GTAGTAGTAGTAG[i:2,h:0,s:1];

Distance matrix:

0 11
11 0

======= End testing mergeCluster (WPGMA) =======

14

This function works correctly only if the parameters supplied have a correct struc-
ture: elements in pair must be different and compatible with the size of the matrix,
tree must contain no nullptr, the size of the tree must be the same as the size
of the distance matrix, and the latter must be square. These conditions must be
guaranteed using the exception mechanism.

• void buildPhylogeneticTree(Tree& tree, DistanceMatrix& distances, AlgoType
↪→ algorithm = WPGMA); applies the algorithm that merges the nodes closest in
terms of distance, until only one node remains in the tree. The tree will then
represent the desired phylogenetic tree. For this function to work properly, tree
must contain no nullptr, the size of the tree must be the same as the size of the
distance matrix, and the latter must be square. If any of theses conditions is not
verified an exception must be thrown.

• std::string phylogeneticTreeToString(const Cluster* root, bool verbose
↪→ = false); allows you to display a phylogenetic tree more visually, starting
from its root and displaying the height of each cluster (see below for an example of
the desired display). If root is nullptr, an empty string will be returned.
Indication: use a recursive helper function taking an additonal parameter repre-
senting the ”depth” of a given recursive call (this depth will give the number of '|'
symbols in a given line).

The function test called by test_part3 , should produce the following display for the
Wikipedia example :
----- Wikipedia Example with UPGMA ----
(((Taxon_0,Taxon_1),Taxon_4),(Taxon_2,Taxon_3));
(16.5)
| +--- (11)
| | +--- (8.5)
| | | +---a
| | | +---b
| | +---e
| +--- (14)
| | +---c
| | +---d
----- Wikipedia Example with WPGMA ----
(((a[i:0,h:0,s:1],b[i:1,h:0,s:1])[i:-1,h:8.5,s:2],e[i:4,h:0,s:1])[i:-1,h

↪→ :11,s:3],(c[i:2,h:0,s:1],d[i:3,h:0,s:1])[i:-1,h:14,s:2])[i:-1,h
↪→ :17.5,s:5];

(17.5)
| +--- (11)
| | +--- (8.5)
| | | +---a
| | | +---b
| | +---e
| +--- (14)
| | +---c
| | +---d

15

Tests

To test this part, you can call the function test_part3. The expected outputs for this
part are given in Appendix A.2.2. You can also call the unit test function as follows:
run_unit_tests(3)
If your code is correct, you should get only the messages [Passed]

A Appendix

A.1 UPGMA vs WGPMA

The two algorithms WPGMA and UPGMA differ only in the way they compute the
distances for a newly created cluster. Recall that in WPGMA, if cluster C1 and C2 are
merged into cluster C1C2 then the distance between C1C2 and a third cluster C3 is the
average between the distances, i.e.,

d(C1C2, C3) =
d(C1, C3) + d(C2, C3)

2
.

In UPGMA, the distance depends also on the sizes of the clusters, i.e., if a cluster includes
more elements, it has more influence on the distance. More precisely, the distance between
the merged cluster C1C2 and a third cluster C3 is given by the proportional average, i.e.,

d(C1C2, C3) =
|C1| · d(C1, C3) + |C2| · d(C2, C3)

|C1|+ |C2|
,

where |C1| and |C2| refer to the size of C1 and C2, respectively.

In the following, we will apply the UPGMA clustering method to the example from
Section 2. We start with the distance matrix given in Table 4. The minimal distance is
between T1 and T3, which leads to a new cluster T1T3. Initially, the size of all clusters
is 1 because each of them includes only one taxon. Therefore, the distances between T1T3

and the other clusters are the same for both algorithms (WPGMA and UPGMA). They
are shown in Table 5. In the next step, we merge the clusters T1T3 and T2. Note that
T1T3 has a size of 2 and T2 has a size of 1. Using this information the distance between
the new cluster T1T3T2 and T4 is computed as follows:

d(T1T3T2, T4) =
2 · d(T1T3, T4) + 1 · d(T2, T4)

2 + 1
=

2 · 7 + 1 · 10
2 + 1

= 8

This leads to the final distance matrix shown in Table 6 and the corresponding tree shown
in Figure 6.

16

Table 4: Distance between
T1, T2, T3, and T4

T1 T2 T3 T4

T1 0 5 4 7
T2 5 0 7 10
T3 4 7 0 7
T4 7 10 7 0

Table 5: Distances be-
tween T1T3, T2, and T4

T1T3 T2 T4

T1T3 0 6 7
T2 6 0 10
T4 7 10 0

Table 6: Distances be-
tween T1T3T2 et T4

T1T3T2 T4

T1T3T2 0 8
T4 8 0

h = 4

h = 3

h = 2

T1

2

T3

2

1

T2

3

1

T4

4

Figure 6: Final tree for UPGMA

A.2 Outputs of the provided tests

A.2.1 Part 2

========= TESTING PART 2 ================
======= Testing calculateDistance =======
Distance between CGTAACCTTGGG and CGTGAGCTTA: 5
======= end Testing calculateDistance =======
======= Testing initTree =======
The initial vector of taxa is: {"a", "b", "c", "d", "e"}
Tree constructed by initTree, printed in non verbose mode:
Taxon_0;
Taxon_1;
Taxon_2;
Taxon_3;
Taxon_4;
Same tree printed in verbose mode:
a[i:0,h:0,s:1];
b[i:1,h:0,s:1];
c[i:2,h:0,s:1];
d[i:3,h:0,s:1];
e[i:4,h:0,s:1];
======= end testing initTree =======
======= Testing initDistanceMatrix =======
Input data: a tree constructed using the taxa ACGTAACCTTGGG,

↪→ ACGGTCTATTGGA and GTAGTAGTAGTAG

17

Distance matrix constructed by initDistanceMatrix:
0 6 11
6 0 11
11 11 0
======= end testing initDistanceMatrix =======
======= Testing eraseColumn and eraseRow =======
Initial distance matrix:
0 17 21 31 23
17 0 30 34 21
21 30 0 28 39
31 34 28 0 43
23 21 39 43 0
The previous matrix after erasing column 3:
0 17 21 23
17 0 30 21
21 30 0 39
31 34 28 43
23 21 39 0
The previous matrix after erasing row 3:
0 17 21 23
17 0 30 21
21 30 0 39
23 21 39 0
======= end testing eraseColumn and eraseRow =======

A.2.2 Part 3

========= TESTING PART 3 ================
======= Testing minimumDistance =======
Input data: the distance matrix
Input data: the distance matrix {0, 1, 2}, {1, 0, 1}, {2, 1, 0}
The pair with the minimum distance is:
0-1
======= End testing minimumDistance =======
======= Testing mergeCluster (WPGMA) =======

The pair to merge:
0-1

Before merging:

Tree:

ACGTAACCTTGGG[i:0,h:0,s:1];
ACGGTCTATTGGA[i:1,h:0,s:1];
GTAGTAGTAGTAG[i:2,h:0,s:1];

18

Distance matrix:

0 6 11
6 0 11
11 11 0

After merging clusters:

Tree:

(ACGTAACCTTGGG[i:0,h:0,s:1],ACGGTCTATTGGA[i:1,h:0,s:1])[i:-1,h:3,s:2];
GTAGTAGTAGTAG[i:2,h:0,s:1];

Distance matrix:

0 11
11 0

======= End testing mergeCluster (WPGMA) =======
======= Testing mergeCluster (UPGMA) =======
Input data: a tree with three leaf nodes "ACGTAACCTTGGG", "ACGGTCTATTGGA

↪→ " and "GTAGTAGTAGTAG"

The pair to merge:
0-1

Before merging:

Tree:

ACGTAACCTTGGG[i:0,h:0,s:1];
ACGGTCTATTGGA[i:1,h:0,s:1];
GTAGTAGTAGTAG[i:2,h:0,s:1];

Distance matrix:

0 6 11
6 0 11
11 11 0

After merging clusters:

Tree:

(ACGTAACCTTGGG[i:0,h:0,s:1],ACGGTCTATTGGA[i:1,h:0,s:1])[i:-1,h:3,s:2];
GTAGTAGTAGTAG[i:2,h:0,s:1];

19

Distance matrix:

0 11
11 0

======= End testing mergeCluster (UPGMA) =======
======= Testing build and print phylogenetic trees =======
Input data:
Tree:

Verbose printing:
CATAGACCTGACGCCAGCTC[i:0,h:0,s:1];
CATAGACCCGCCATGAGCTC[i:1,h:0,s:1];
CGTAGACTGGGCGCCAGCTC[i:2,h:0,s:1];
CCTAGACGTCGCGGCAGTCC[i:3,h:0,s:1];
Non verbose printing:
Taxon_0;
Taxon_1;
Taxon_2;
Taxon_3;

Distance matrix:

0 5 4 7
5 0 7 10
4 7 0 7
7 10 7 0
----- Build Phylogenetic Tree with WPGMA ----

After calling buildPhylogeneticTree:
Tree:

(((Taxon_0,Taxon_2),Taxon_1),Taxon_3);

Distance matrix:

0

Calling phylogeneticTreeToString:

Verbose printing:
(4.25)
| +--- (3)
| | +--- (2)
| | | +---CATAGACCTGACGCCAGCTC
| | | +---CGTAGACTGGGCGCCAGCTC
| | +---CATAGACCCGCCATGAGCTC

20

| +---CCTAGACGTCGCGGCAGTCC
Non verbose printing:
(4.25)
| +--- (3)
| | +--- (2)
| | | +---Taxon_0
| | | +---Taxon_2
| | +---Taxon_1
| +---Taxon_3

----- Build Phylogenetic Tree with UPGMA ----

After calling buildPhylogeneticTree:

Tree:

(((Taxon_0,Taxon_2),Taxon_1),Taxon_3);

Calling phylogeneticTreeToString:

Verbose printing:
(4)
| +--- (3)
| | +--- (2)
| | | +---CATAGACCTGACGCCAGCTC
| | | +---CGTAGACTGGGCGCCAGCTC
| | +---CATAGACCCGCCATGAGCTC
| +---CCTAGACGTCGCGGCAGTCC
Non verbose printing:
(4)
| +--- (3)
| | +--- (2)
| | | +---Taxon_0
| | | +---Taxon_2
| | +---Taxon_1
| +---Taxon_3
----- Wikipedia Example with UPGMA ----
(((Taxon_0,Taxon_1),Taxon_4),(Taxon_2,Taxon_3));
(16.5)
| +--- (11)
| | +--- (8.5)
| | | +---a
| | | +---b
| | +---e
| +--- (14)
| | +---c
| | +---d

21

----- Wikipedia Example with WPGMA ----
(((a[i:0,h:0,s:1],b[i:1,h:0,s:1])[i:-1,h:8.5,s:2],e[i:4,h:0,s:1])[i:-1,h

↪→ :11,s:3],(c[i:2,h:0,s:1],d[i:3,h:0,s:1])[i:-1,h:14,s:2])[i:-1,h
↪→ :17.5,s:5];

(17.5)
| +--- (11)
| | +--- (8.5)
| | | +---a
| | | +---b
| | +---e
| +--- (14)
| | +---c
| | +---d
======= end testing build and print phylogenetic trees =======

22

	1 Introduction
	2 Objectives and Example
	3 Structure and code
	3.1 Utility functions
	3.2 Included test files

	4 Implementation
	4.1 Part 1
	4.2 Part 2
	4.3 Part 3

	A Appendix
	A.1 UPGMA vs WGPMA
	A.2 Outputs of the provided tests
	A.2.1 Part 2
	A.2.2 Part 3

