
CS-119(g) Information, Calcul, Communication (ICC-SV) EPFL - Fall Semester 2024

Week 13: Memory Hierarchies (Solutions)

1 Bandwidth (of memories)
We have 15 minutes (= 2 hours − 1h45) to download the videos.

1. • Computer A : We have 800MB/(4bytes/word) = 200 × 106 words. So we need 5µs × 200 × 106

words = 1000s = 16.67 minutes > 15 minutes. We can’t use this computer. (Note: alternatively
you could have computed that 4bytes/5µs = 0.8MB/s and divided 800MB/(0.8MB/s).)

• Computer B : We need 800MB/(400MB/s) = 2s < 15 minutes. We can use this computer.

• Computer C : We need 800MB/(2MB/s) = 400s = 6.67 minutes < 15 minutes. We can use this
computer.

2. • Computer A : We have 2000MB/(4bytes/word) = 500× 106 words. So we need 5µs× 500× 106

words = 2500s = 41.67 minutes > 15 minutes. We can’t use this computer.

• Computer B : We need 2000MB/(400MB/s) = 5s < 15 minutes. We can use this computer.

• Computer C : We need 2000MB/(2MB/s) = 1000s = 16.67 minutes > 15 minutes. We can’t use
this computer.

2 Number of cache defects
There are 11 defects in total :

Address Cache (before access) Effect
1 cache miss

3 Block(0-3) cache hit

8 Block(0-3) cache miss

5 Block(8-11) cache miss

20 Block(8-11), Block(4-7) cache miss

18 Block(8-11), Block(20-23) cache miss

19 Block(16-19), Block(20-23) cache hit

53 Block(16-19), Block(20-23) cache miss

9 Block(16-19), Block(52-55) cache miss

11 Block(8-11), Block(52-55) cache hit

4 Block(8-11), Block(52-55) cache miss

43 Block(8-11), Block(4-7) cache miss

5 Block(40-43), Block(4-7) cache hit

6 Block(40-43), Block(4-7) cache hit

9 Block(40-43), Block(4-7) cache miss

18 Block(8-11), Block(4-7) cache miss



CS-119(g) Information, Calcul, Communication (ICC-SV) EPFL - Fall Semester 2024

3 Spatial and temporal locality
Spatial locality is more important for this application, as each element of the vector is accessed only once.
In this case, small blocks do not help.

4 Cache Memory
The two versions lead to the same number of cache misses. Both versions, initially load 4 elements into the
cache to compute p11 (4 cache misses), then in order to compute p21 or p12 the two missing elements have to
be loaded into the cache (2 cache misses), now the cache is full. To compute third element, a11 and b11 are
replaced by the two missing elements (2 cache misses). For the computation of the fourth (and final) entry
all required elements are in the cache.

Below are more details, in case the explanation above is not clear enough. For version (1), we have the
following memory access requests:

copy r0, @a11 //cache miss
copy r1, @b11 //cache miss
copy r2, @a12 //cache miss
copy r3, @b21 //cache miss

copy r0, @a21 //cache miss
copy r1, @b11
copy r2, @a22 //cache miss (cache full)
copy r3, @b21

copy r0, @a11
copy r1, @b12 //cache miss (replace @a11)
copy r2, @a12
copy r3, @b22 //cache miss (replace @b11)

copy r0, @a21
copy r1, @b12
copy r2, @a22
copy r3, @b22

For version (2), we have the following memory access requests:

copy r0, @a11 //cache miss
copy r1, @b11 //cache miss
copy r2, @a12 //cache miss
copy r3, @b21 //cache miss

copy r0, @a11
copy r1, @b12 //cache miss
copy r2, @a12
copy r3, @b22 //cache miss (cache full)

copy r0, @a21 //cache miss (replace @a11)
copy r1, @b11
copy r2, @a22 //cache miss (replace @b11)
copy r3, @b21

copy r0, @a21

Page 2



CS-119(g) Information, Calcul, Communication (ICC-SV) EPFL - Fall Semester 2024

copy r1, @b12
copy r2, @a22
copy r3, @b22

5 Buying a computer
1. The program checks if x is prime.

2. The memory accesses are in the following table :

No Instruction Memory Access
1 y ← 1 read @1 (cache miss)
2 y ← 1 read block @0 in memory
3 y ← 1 place block @0 in cache
4 y ← 1 read @1 (in cache)
5 x = 0? read @0 (in cache)
6 x = 1? uses register (x already read)
7 s← 0 read @13 (cache miss)
8 s← 0 read block @12 in memory
9 s← 0 place block @12 in cache
10 s← 0 read @13 (in cache)
11 i← 2 read @12 (in cache)
12 s ≤ x? uses register (s already read)
13 s ≤ x? uses register (x already read)
14 y = 1? uses register (y already read)
... ... only uses registers

3. We have 4 cache hits (accesses in which the values are in the cache) and 2 cache misses (accesses in
which the values are not in the cache).

4. To execute the program, the processor accesses the cache memory each time it wants to read or write
a variable. There are 7 cache hits in total, 4 when reading as we saw and 3 when writing at the end
(for i, y, and s; x, has not been modified). So we calculate the time needed for each computer to
finish this program. For compute A, we need 1ns × 7 + 120ns × 2 = 247ns. For computer B, we
need 1.2ns× 7 + 100ns× 2 ≃ 208 ns. If we use this example to decide, we choose computer B; which
is expected as the program doesn’t need a lot of variables/memory; there are few accesses to it but
"many" cache misses (relative to the ratio of memory access time to cache access time, about 100).

Page 3


