CS-119(g)

Information, Calcul, Communication (ICC-SV) EPFL - Fall Semester 2024

Week 13: Memory Hierarchies (Solutions)

1 Bandwidth (of memories)

We have 15 minutes (= 2 hours — 1h45) to download the videos.

1. °

Computer A : We have 800M B/(4bytes/word) = 200 x 10 words. So we need 5us x 200 x 10°
words = 1000s = 16.67 minutes > 15 minutes. We can’t use this computer. (Note: alternatively
you could have computed that 4bytes/5us = 0.8M B/s and divided 800M B/(0.8M B/s).)

Computer B : We need 800M B/(400M B/s) = 2s < 15 minutes. We can use this computer.
Computer C : We need 800M B/(2M B/s) = 400s = 6.67 minutes < 15 minutes. We can use this
computer.

Computer A : We have 2000M B/ (4bytes/word) = 500 x 10° words. So we need 5us x 500 x 10°
words = 2500s = 41.67 minutes > 15 minutes. We can’t use this computer.

Computer B : We need 2000M B/(400M B/s) = 5s < 15 minutes. We can use this computer.

Computer C : We need 2000M B/(2M B/s) = 1000s = 16.67 minutes > 15 minutes. We can’t use
this computer.

2 Number of cache defects

There are 11 defects in total :

Address | Cache (before access) Effect

1
3
8
)
20
18
19
53
9
11
4
43
5
6

9
18

cache miss
Block(0-3) cache hit
Block(0-3) cache miss
Block(8-11) cache miss

Block(8-11), Block(4-7) cache miss
Block(8-11), Block(20-23) | cache miss
Block(16-19), Block(20-23) | cache hit
Block(16-19), Block(20-23) | cache miss
Block(16-19), Block(52-55) | cache miss
Block(8-11), Block(52-55) | cache hit
Block(8-11), Block(52-55) | cache miss

Block(8-11), Block(4-7) cache miss

Block(40-43), Block(4-7) cache hit

Block(40-43), Block(4-7) cache hit

Block(40-43), Block(4-7) | cache miss

Block(8-11), Block(4-7) cache miss

CS-119(g) Information, Calcul, Communication (ICC-SV) EPFL - Fall Semester 2024

3 Spatial and temporal locality

Spatial locality is more important for this application, as each element of the vector is accessed only once.
In this case, small blocks do not help.

4 Cache Memory

The two versions lead to the same number of cache misses. Both versions, initially load 4 elements into the
cache to compute py; (4 cache misses), then in order to compute pa; or pis the two missing elements have to
be loaded into the cache (2 cache misses), now the cache is full. To compute third element, a;; and by; are
replaced by the two missing elements (2 cache misses). For the computation of the fourth (and final) entry
all required elements are in the cache.

Below are more details, in case the explanation above is not clear enough. For version (1), we have the
following memory access requests:

copy rO, @ll //cache miss
copy rl, @bll //cache miss
copy r2, @al2 //cache miss
copy r3, @21 //cache miss

copy r0, @21 //cache miss

copy rl, @bll

copy r2, @a22 //cache miss (cache full)
copy r3, @b21

copy r0, @all
copy rl, @bl12 //cache miss (replace @all)
copy r2, @al2
copy r3, @b22 //cache miss (replace @bll)

copy r0, @a21
copy rl, @bl2
copy r2, 0a22
copy r3, @b22

For version (2), we have the following memory access requests:

copy r0, @all //cache miss
copy rl, @bll //cache miss
copy r2, @l2 //cache miss
copy r3, @b21 //cache miss

copy r0, Q@all

copy rl, @12 //cache miss

copy r2, @al2

copy r3, @b22 //cache miss (cache full)

copy r0, @21 //cache miss (replace @all)
copy rl, @bl1l
copy r2, @22 //cache miss (replace @bl1l)
copy r3, @b21

copy r0, @a21

Page 2

CS-119(g) Information, Calcul, Communication (ICC-SV)

copy rl, @bl2
copy r2, @a22
copy r3, @b22

5 Buying a computer

1. The program checks if = is prime.

2. The memory accesses are in the following table :

No | Instruction | Memory Access

1 |y+1 read @1 (cache miss)

2 |y+1 read block @0 in memory

3 |y«+1 place block @0 in cache

4 |y+1 read @1 (in cache)

5 | =07 read @0 (in cache)

6 | z=17 uses register (x already read)
7 | s+0 read @13 (cache miss)

8 | s+ 0 read block @12 in memory

9 | s+0 place block @12 in cache

10 | s« 0 read @13 (in cache)

11 [i+ 2 read @12 (in cache)

12 | s<a? uses register (s already read)
13 | s <a? uses register (x already read)
14 | y=17? uses register (y already read)

only uses registers

EPFL - Fall Semester 2024

3. We have 4 cache hits (accesses in which the values are in the cache) and 2 cache misses (accesses in
which the values are not in the cache).

4. To execute the program, the processor accesses the cache memory each time it wants to read or write
a variable. There are 7 cache hits in total, 4 when reading as we saw and 3 when writing at the end
(for i, y, and s; x, has not been modified). So we calculate the time needed for each computer to
finish this program. For compute A, we need 1ns x 7 + 120ns x 2 = 247ns. For computer B, we
need 1.2ns x 7+ 100ns x 2 ~ 208 ns. If we use this example to decide, we choose computer B; which
is expected as the program doesn’t need a lot of variables/memory; there are few accesses to it but
"many" cache misses (relative to the ratio of memory access time to cache access time, about 100).

Page 3

