CS-119(g) Information, Calcul, Communication (ICC-SV) EPFL - Fall Semester 2024

Week 10: Computation and Algorithms (Solutions)

1 Powerful integers

1. This algorithm has a complexity ©(n). Indeed, if we consider T'(n) its complexity, we have T(n) <
24 T'(n — 1) which results in linear time.

2. Consider the following algorithm:

Algorithm 1 Binary to Decimal
input: B of length n
output: Decimal representation of B.
for ¢ from 1 to n do
a <+ A(2,n —1i) // Compute 2"~ using the Algorithm A from Question 1
d<+ d+ Bli]*a

return d

(Note: consider the start of the code ("for...") as line 1.)

A loop iteration i needs 8 + (n — i) instructions: cost 8 for line 1 (cost 3), line 3 (cost 4) and the
assignment of the variable a in line 2 (cost 1); and (n — ¢) for the call of the algorithm A with n —4
in line 2. In total this makes Y " (8 + (n—4)) = > 8+ > " n—> " i=38n+n*— % =
8n+n2—%2—%:§+%:9(n2).

The following algorithm solves the same problem but more efficiently.

Algorithm 2 Binary to Decimal
input: B of size n.
output: Decimal representation of B.
d<+0
for i from 1 to n do
d + 2d + BJi]

return d

A loop iteration needs 7 instructions. The loop has n iterations and T'(n) = 7n. This algorithm has a
complexity ©(n).

3. Consider the following algorithm:

Algorithm 3 Algorithm P
input: ¢ >0, n>0
output: a”
if n =0 then

return 1
if n mod 2 =0 then
return (P (a,n/2))’
return a X P(a,n — 1)

If we consider T'(n) as the complexity of this algorithm, then we have T'(n) < 6 +7 (|n/2]) which gives
O(logn).

CS-119(g) Information, Calcul, Communication (ICC-SV) EPFL - Fall Semester 2024

2 Find an integer in a matrix

1. We just have to go through the whole matrix:

Algorithm 4 Algorithm A

input: A matrix M and an integer k
output: true If and only if k£ appears in the matrix.
n < size(M)
for i from 1 to n do

for j from 1 to n do

if k= M[i][j] then
return true

return false

The complexity is then O(n?).

2. We can for this question, make a binary search on each column. Given the binary search algorithm we
saw in class, suppose that we have an algorithm binary search which, for a given sorted array with
one dimension of size n, and an integer k, finds if this integer appears in the array in time O(logn) .
We then write the following algorithm:

Algorithm 5 Algorithm B
input: A matrix M and an integer k
output: true if and only if £ appears in the matrix.
n < size(M)
for i from 1 to n do
if binary search(M[i], k) then

return true

return false

This algorithm makes n binary searches on arrays of size n, so we have a complexity O(nlogn).

3. Suppose we start with the matrix entry M[1][n]. If M[1][n] = k then we have found our solution and
the algorithm is finished. Otherwise, there are two possible cases:

e M[1][n] < k. Then, as all the integers of the first line are smaller than M|1][n], we already know
that k cannot appear in this line. So we go down one line vertically and go to the matrix entry
M|2][n] and start again.

e M[1][n] > k. Then, as all the integers in the last column are greater than M|[1][n], we already
know that k& cannot appear in this column. So we move horizontally one column to the left and
go to the matrix entry M|[1][n — 1] and start again.

We use this principle every time we arrive at a new entry M[i][j], and compare k to M[d][j]. If it is
equal, we have found our solution. Otherwise, if k is bigger we can move to entry M[i + 1][j] and if &
is smaller we move instead to entry M[i|[j —1]. At all times, we know that all the matrix entries which
are either strictly above M{[i][j] or strictly to its right cannot contain k. This ensures the algorithm is
correct.

What is the complexity of this algorithm? At each step, we move the 1 "place" down or to the left.
Since we start from i = 1,j = n, we can only make 2n moves like that. The complexity is therefore

O(n).

Page 2

CS-119(g) Information, Calcul, Communication (ICC-SV) EPFL - Fall Semester 2024

Algorithm 6 Algorithm C
input: A matrix M and an integer k
output: true if and only if £ appears in the matrix.
n < size(M)
11
jn
while i <netj>1do
if M[i][j] = k then
return true
if M[i][j] < k then
14 1+1
if M[i][j] > k then
Jei—1

return false

3 Climbing stairs

1. Suppose that we reach the step i + 2. There are two possibilities for the last movement we made to
reach the step i + 2.

e We can make a simple step of length 1. So we come from the step i+ 1 and we have paid cost[i+2]
+ the cost of the optimal strategy to reach the step i + 1. So f[i + 2] < cost[i + 2] + f[i + 1].

e We can make a step of length 2. We come from the step ¢ we have paid cost[i + 2] + the cost of
the optimal strategy to reach the step i. So f[i + 2] < cost[i + 2] + f[i].

So, we have f[i + 2] < cost[i + 2] + f[i] and f[i + 2] < cost[i + 2] + f[i + 1] which gives
fli + 2] < costli + 2] + min (f[i], fli + 1])
As there are no other possibilities for the last step, we have, in fact, equality and

fli+ 2] = cost[i + 2] + min (f[¢], f[i + 1])

2. With the previous remark we can build the following algorithm:

Algorithm 7 Algorithm F
input: an array cost of size n
output: f[n]
n + size(cost)
f + 0 (we initialize the list f of optimal strategies for each case)
fI1] < cost[1]
f[2] + cost[2]
for i from 3 to n do
f[i] + cost[i] + min (f[¢ — 1], f[i — 2])
return f[n]

3. None are correct. For example, imagine that n = 3[for any [. Suppose that we consider only a subset
of all possible strategies: all that take exactly [steps of length 1 and [steps of length 2 (we have
[+ 2l = 3l steps). How many such strategies are there? To determine a strategy, we just have to
determine in which order we make the steps of length 1 or 2 so there are (le) possibilities (choose [
locations for the 1 steps among 2! locations in total). So, since (Ql) = (27?/33) is very large compared to

1
nt990% no option is right.

Page 3

CS-119(g) Information, Calcul, Communication (ICC-SV) EPFL - Fall Semester 2024

We can see that despite the exponential number of possible solutions, dynamic programming allows us
to solve the problem very quickly.

4. Additional remark: Some have suggested the following algorithm to solve the problem: when on a
step 7, choose the cheaper of the two available steps (steps ¢ + 1 and i + 2). One might think that this
algorithm gives the best strategy, but this is not the case. Consider the following example :

0

100

11

10

Figure 1: Counter-example

The proposed strategy goes to the 10 cost case first then 11 then 0 for a total cost of 21. While the
best strategy would be to go to the 11 case first then 0 for a total cost of 11.

These types of algorithms that make local optimal choices (instead of global optimal choices) are called
greedy algorithms, and as you can see, they don’t always give us the optimal solution!

4 Birthday party

1. We could solve it with a complexity of O(nlogn) by first sorting it with merge sort, but we don’t
need a sorting algorithm for this problem. Indeed, we can just transverse the array and find the
next birthday in linear time (O(n)), which is significantly faster than a solution with complexity of
O(nlogn). This makes sorting first a worse solution since it is less efficient.

Below is a solution to this problem in linear time:

Algorithm 8 Algorithm G
input: an array birthdays of size n
input: a number current date
output: a number representing the next birthday
n < size(birthdays)
earliest _date < 13 (remember highest possible date is 12.31)
next date < 13
for i from 1 to n do
if birthdays[i] < earliest_date then
earliest _date < birthdays]i]

if birthdays[i] > current _date and birthdays[i] < next_date then
next_date < birthdays|i]

if next date = 13 then
return earliest _date

return next date

Page 4

CS-119(g) Information, Calcul, Communication (ICC-SV) EPFL - Fall Semester 2024

2. We used binary search in exercise 2 (Find an integer in a matrix). We can use a variant with the
same complexity of O(logn) that besides searching for the value also computes its difference with the
current list element (and keeps track of both the lowest positive difference between the current date
and the element as well as that element’s index). Cousidering only positive difference ensures we are
only considering cases where the birthday date is bigger than the current date, which is important for
finding the next birthday.

There are three possible outputs to this function: we get the current day (the next birthday is today!),
we get the next birthday, or we don’t get any date (instead we get an error value like —1, because
there was no birthday after the current date), in which case we instead return the first list item (the
next birthday is the first birthday next year).

Page 5

