CS-119(g) Information, Calcul, Communication (ICC-SV) EPFL - Fall Semester 2024

Week 2: Representation of Information (Solutions)

1

2

Positive Decimal Numbers

. Let X be a number in decimal for which we look for its unknown binary pattern denoted by 0.6,,b;0,b..

The expression of X in binary is therefore X = b, x 271 +b, x 272 +b, x 273 + b, x 27%. The steps
are:

(@) 2X X =by x2°+b, x 27+ b, x 2724 b, x 273,

(b) The integer part is b,, x 2° which gives us b,, as the first weight obtained.

(c) Keep only the fractional part, that is b, x 271 + by x 2724+ b, x 273, If it is zero, the conversion
is finished. Otherwise, repeat (a) with this quantity.

. If X is 0.375 the algorithm runs as follows:

(a) 2 x X is 0.750.
(b) by is 0.

(¢) The fractional part 0.750 is not zero: we continue.

(a) 2 x0.750 is 1.5.
(b) b, is 1.

(c¢) The fractional part 0.5 is not zero: we continue.

(a) 2x0.51s 1.
(b) by is 1

(¢) The fractional part is zero and we are done; therefore b, is 0.

Applying this method to 0.11¢ gives you the following binary pattern 0.00011, which is an infinitely
long pattern because the overline means that this pattern repeats indefinitely. This means that there
is no exact representation of this number in binary.

Solutions:

(a) 0.37510: 0.011
(b) 0.110: 0.0001T
(c) 0.62510: 0.101
(d) 0.1251: 0.001

Overflow and Capacity

1. Conversions: 8-bit binary patterns.

(a) 00000110 is positive, with a value of 4 4+ 2 = 6.

11111001 is negative because its most significant bit is 1. To know its absolute value, we calculate
its opposite by taking its 2’s complement, i.e., the 1’s complement to which we add 1.

11111001
00000110 1’s complement
-+ 00000001 +1

00000111 which is 7, so the initial pattern is -7.

CS-119(g) Information, Calcul, Communication (ICC-SV) EPFL - Fall Semester 2024

10000110 is negative because its most significant bit is 1. To know its absolute value, we cal-
culate its opposite by taking its 2’s complement, i.e., the 1’s complement to which we add 1.

10000110
01111001 1’s complement
+ 00000001 +1
01111010 which is 2 + 8 + 16 + 32 + 64 = 122, so the initial pattern is -122.

(b) 0 = 00000000.

-12 first calculate 12 in binary then take its 2’s complement
00001100 12

11110011 1’s complement,

-+ 00000001 +1
11110100 2’s complement = represents -12.

-1 first calculate 1 in binary and then take its complement.

00000001 1
11111110 1’s complement

<+ 00000001 +1
11111111 2’s complement = represents -1.

12719 = 01111111 = maximum positive numbers for 8 bits.

—1281¢p = 10000000 = minimum of negative numbers for 8 bits.

(¢) Conclusion: the domain is not symmetric. One must watch out for the singular case where one
asks for the opposite of the minimum negative number, as this would give an incorrect result.

2. The value 64 is representable with this bit pattern: 01000000.

01000000 64
-+ 01000000 +64
10000000 gives -128.

This is an overflow, the addition of 2 positive numbers gives a negative number, which is incorrect.

Page 2

CS-119(g) Information, Calcul, Communication (ICC-SV) EPFL - Fall Semester 2024

3 Overflow in Signed Integer Addition and Subtraction

Recall that the MSB of a signed integer in two’s complement representation is the sign, i.e., if MSB=0, then
the number is positive and if MSB=1, then the number is negative. Consider the second line in Table 1, in
this case we are adding two positive numbers but the result is a negative number, therefore an overflow must
have happened. In the second to last line of Table 1, we have the opposite case, we are adding new negative
numbers and the result is a positive number, which is also not possible without an overflow.

MSB of operand a MSB of operand b MSB of the sum a + b Overflow
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Table 1: Addition of signed integers.

MSB of the minuend MSB of the subtrahend MSB of the subtraction Overflow

i = i e B e B e B e
—_—_0 O == OO
—F O R ORORO
S OoOOoORrRHROOO

Table 2: Subtraction of signed integers.

4 Hexadecimal Representation

In binary faig = 111110102, ca;g = 110010102, de1g = 110111105. In decimal faig = 25010, caig = 20219,
deig = 22219. We see that the weight of red channel has the stronger weight but the other components are
also high. It suggests a very light color, with a red overweight: a light pink. More precisely, it’s

Page 3

CS-119(g) Information, Calcul, Communication (ICC-SV) EPFL - Fall Semester 2024

)

Representation of Floating-Point Numbers

. With 2 bits of exponent, there will be 22 = 4 successive intervals in which the numbers represented

will have the same distance between them. There are 2 = 8 numbers per interval. We use only the
following normalized formula: 2¢*P°mént . | mantissa.

. The min is given by 2°- 1.0, i.e. 1.

For the max: the exponent = 11, i.e., 3 (in decimal) and the mantissa is 111, i.e., 0.875 (in decimal).
The max is given by : 2% - 1.875 = 8- 1.875 = 15.
The representative values are

mant. | 000 | 001 010 011 | 100 | 101 110 111

exp.

00 1 1.125 | 1.25 | 1.375 | 1.5 | 1.625 | 1.75 | 1.875
01 2 2.25 2.5 2.75 3 3.25 3.5 3.75
10 4 4.5 5 5.5 6 6.5 7 7.5

11 8 9 10 11 12 13 14 15

The absolute error is not constant: it is the difference between two successive numbers; it doubles when
one goes from one interval associated with a power of 2 to the next.

. The maximum relative error is bounded by LSB of the mantissa, i.e., it is bounded by 273 = 0.125,

i.e., 12.5%. This bound for the relative error is the same for all 4 intervals.

Page 4

CS-119(g) Information, Calcul, Communication (ICC-SV) EPFL - Fall Semester 2024

6

Decimal to Floating-Point Representation

. 0001111 can be converted to 2° - 1.1111 (the first three bits, 000, are the exponent, and the remaining

four, 1111, the mantissa). Thus, 2°-1+271.14+272.14+273.14+27%.1 = 1.93751¢. Similarly, 1101001
can be written as 2° - 1.1001, which is equal to 1001.

. To convert a decimal number to a floating point representation, we must first convert the number to

binary, then normalize it, and finally keep only as many bits as the representation allows (in this case,
3 bits for the exponent, and 4 for the mantissa).

We can convert 1.8 to binary, where we will obtain 1.1100,. We can normalize this as 2° * 1.1100.
Ignoring the extraneous bits, we can then write it in our simplified 7-bit representation, 0001100. To
find the absolute error, we must first compute 2° - 1.1100 = 1.75. Thus, the absolute error is given by
1.8 — 1.75 = 0.05, and the relative one by 0.05/1.8 2 0.028 < 0.0625.

Similarly, 2.62519 can be converted into 10.101,. We can normalize this as 2! - 1.0101. There are no
extraneous bits, which means this number will be represented exactly with the simplified 7-bit repre-
sentation, 0010101. Both errors are 0.

Finally, we follow the same process a third time for 114;5. We obtain its binary representation,
11100104, which can be normalized as 26-1.110010. Excluding the extraneous bits, we obtain 26-1.1100
(which is equal to 112). The absolute error is then given by 114 — 112 = 2, and the relative one by
2/114 =~ 0.018 < 0.0625.

Page 5

EPFL - Fall Semester 2024

CS-119(g) Information, Calcul, Communication (ICC-SV)

For reference, all the values that can be represented exactly with this 7-bit simplified floating point

representation:

1144 0ve 494 jq4é 91¢ 80¢ 00¢ 61 781 9LT 891 09T ST 474" 9¢T 8¢l T1T
144! 0ct 91T 48! SOT 70T 00T 96 6 88 78 08 9L cL 89 79 01T
9 09 8¢ 9¢ % 44 0¢ 574 9% 147 44 (i 8¢ 9¢ e 49 10T
1¢ 0¢ 6¢C 8¢ LT 9¢ Gc 144 €C 44 1¢C 0c 6T ST LT 9T 00T
g'Gqr ar vl 14! q'el ST qclt ¢l Q11 1T g0t 0T g6 6 a'8 8 T10
QL. Q'L Gg'L L GL'9 g9 Gc'9 9 qLq q'Q qc's q QLv q'y Gy 14 010
GLR]'E qLe Gc9'¢ q'g GLE'C Gc'e AR S GL8'C GLC Gc9'c G¢'C GLEC GC'c Gcre 4 T00
GLE6'T | GL8'T | SCIV'T | SL°'T | GL89°'T | G291 | 6294’1 QT GLEV'T | QLE'T | GCIE'T | GC'T | GL8T'T | G¢I'T | G290°'T ! 000
‘dxo

ITIT OTTT T0TT 00TT T10T 0T0T TO0T 000T T110 0TTO0 T0TO0 0010 1100 0100 T000 0000 | "jyuew

Page 6

	Positive Decimal Numbers
	Overflow and Capacity
	Overflow in Signed Integer Addition and Subtraction
	Hexadecimal Representation
	Representation of Floating-Point Numbers
	Decimal to Floating-Point Representation

