
CS-119(g) Information, Calcul, Communication (ICC-SV) EPFL - Fall Semester 2024

Week 2: Representation of Information (Solutions)

1 Positive Decimal Numbers
1. Let X be a number in decimal for which we look for its unknown binary pattern denoted by 0.bwbxbybz.

The expression of X in binary is therefore X = bw × 2−1 + bx × 2−2 + by × 2−3 + bz × 2−4. The steps
are:

(a) 2×X = bw × 20 + bx × 2−1 + by × 2−2 + bz × 2−3.

(b) The integer part is bw × 20 which gives us bw as the first weight obtained.

(c) Keep only the fractional part, that is bx × 2−1 + by × 2−2 + bz × 2−3. If it is zero, the conversion
is finished. Otherwise, repeat (a) with this quantity.

2. If X is 0.375 the algorithm runs as follows:

(a) 2×X is 0.750.

(b) bw is 0.

(c) The fractional part 0.750 is not zero: we continue.

(a) 2× 0.750 is 1.5.

(b) bx is 1.

(c) The fractional part 0.5 is not zero: we continue.

(a) 2× 0.5 is 1.

(b) by is 1.

(c) The fractional part is zero and we are done; therefore bz is 0.

Applying this method to 0.110 gives you the following binary pattern 0.00011, which is an infinitely
long pattern because the overline means that this pattern repeats indefinitely. This means that there
is no exact representation of this number in binary.

Solutions:

(a) 0.37510: 0.011

(b) 0.110: 0.00011

(c) 0.62510: 0.101

(d) 0.12510: 0.001

2 Overflow and Capacity
1. Conversions: 8-bit binary patterns.

(a) 00000110 is positive, with a value of 4 + 2 = 6.

11111001 is negative because its most significant bit is 1. To know its absolute value, we calculate
its opposite by taking its 2’s complement, i.e., the 1’s complement to which we add 1.

11111001
00000110 1’s complement

+ 00000001 +1
00000111 which is 7, so the initial pattern is -7.



CS-119(g) Information, Calcul, Communication (ICC-SV) EPFL - Fall Semester 2024

10000110 is negative because its most significant bit is 1. To know its absolute value, we cal-
culate its opposite by taking its 2’s complement, i.e., the 1’s complement to which we add 1.

10000110
01111001 1’s complement

+ 00000001 +1
01111010 which is 2 + 8 + 16 + 32 + 64 = 122, so the initial pattern is -122.

(b) 0 = 00000000.

-12 first calculate 12 in binary then take its 2’s complement
00001100 12
11110011 1’s complement

+ 00000001 +1
11110100 2’s complement = represents -12.

-1 first calculate 1 in binary and then take its complement.
00000001 1
11111110 1’s complement

+ 00000001 +1
11111111 2’s complement = represents -1.

12710 = 01111111 = maximum positive numbers for 8 bits.

−12810 = 10000000 = minimum of negative numbers for 8 bits.

(c) Conclusion: the domain is not symmetric. One must watch out for the singular case where one
asks for the opposite of the minimum negative number, as this would give an incorrect result.

2. The value 64 is representable with this bit pattern: 01000000.
01000000 64

+ 01000000 +64
10000000 gives -128.

This is an overflow, the addition of 2 positive numbers gives a negative number, which is incorrect.

Page 2



CS-119(g) Information, Calcul, Communication (ICC-SV) EPFL - Fall Semester 2024

3 Overflow in Signed Integer Addition and Subtraction
Recall that the MSB of a signed integer in two’s complement representation is the sign, i.e., if MSB=0, then
the number is positive and if MSB=1, then the number is negative. Consider the second line in Table 1, in
this case we are adding two positive numbers but the result is a negative number, therefore an overflow must
have happened. In the second to last line of Table 1, we have the opposite case, we are adding new negative
numbers and the result is a positive number, which is also not possible without an overflow.

MSB of operand a MSB of operand b MSB of the sum a+ b Overflow
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Table 1: Addition of signed integers.

MSB of the minuend MSB of the subtrahend MSB of the subtraction Overflow
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

Table 2: Subtraction of signed integers.

4 Hexadecimal Representation
In binary fa16 = 111110102, ca16 = 110010102, de16 = 110111102. In decimal fa16 = 25010, ca16 = 20210,
de16 = 22210. We see that the weight of red channel has the stronger weight but the other components are
also high. It suggests a very light color, with a red overweight: a light pink. More precisely, it’s like this.

Page 3



CS-119(g) Information, Calcul, Communication (ICC-SV) EPFL - Fall Semester 2024

5 Representation of Floating-Point Numbers
1. With 2 bits of exponent, there will be 22 = 4 successive intervals in which the numbers represented

will have the same distance between them. There are 23 = 8 numbers per interval. We use only the
following normalized formula: 2exponent · 1.mantissa.

2. The min is given by 20 · 1.0, i.e. 1.
For the max: the exponent = 11, i.e., 3 (in decimal) and the mantissa is 111, i.e., 0.875 (in decimal).
The max is given by : 23 · 1.875 = 8 · 1.875 = 15.
The representative values are
mant. 000 001 010 011 100 101 110 111
exp.
00 1 1.125 1.25 1.375 1.5 1.625 1.75 1.875
01 2 2.25 2.5 2.75 3 3.25 3.5 3.75
10 4 4.5 5 5.5 6 6.5 7 7.5
11 8 9 10 11 12 13 14 15

The absolute error is not constant: it is the difference between two successive numbers; it doubles when
one goes from one interval associated with a power of 2 to the next.

3. The maximum relative error is bounded by LSB of the mantissa, i.e., it is bounded by 2−3 = 0.125,
i.e., 12.5%. This bound for the relative error is the same for all 4 intervals.

Page 4



CS-119(g) Information, Calcul, Communication (ICC-SV) EPFL - Fall Semester 2024

6 Decimal to Floating-Point Representation
1. 0001111 can be converted to 20 · 1.1111 (the first three bits, 000, are the exponent, and the remaining

four, 1111, the mantissa). Thus, 20 ·1+2−1 ·1+2−2 ·1+2−3 ·1+2−4 ·1 = 1.937510. Similarly, 1101001
can be written as 26 · 1.1001, which is equal to 10010.

2. To convert a decimal number to a floating point representation, we must first convert the number to
binary, then normalize it, and finally keep only as many bits as the representation allows (in this case,
3 bits for the exponent, and 4 for the mantissa).

We can convert 1.810 to binary, where we will obtain 1.11002. We can normalize this as 20 ∗ 1.1100.
Ignoring the extraneous bits, we can then write it in our simplified 7-bit representation, 0001100. To
find the absolute error, we must first compute 20 · 1.1100 = 1.75. Thus, the absolute error is given by
1.8− 1.75 = 0.05, and the relative one by 0.05/1.8 ≈ 0.028 ≤ 0.0625.

Similarly, 2.62510 can be converted into 10.1012. We can normalize this as 21 · 1.0101. There are no
extraneous bits, which means this number will be represented exactly with the simplified 7-bit repre-
sentation, 0010101. Both errors are 0.

Finally, we follow the same process a third time for 11410. We obtain its binary representation,
11100102, which can be normalized as 26 ·1.110010. Excluding the extraneous bits, we obtain 26 ·1.1100
(which is equal to 112). The absolute error is then given by 114 − 112 = 2, and the relative one by
2/114 ≈ 0.018 ≤ 0.0625.

Page 5



CS-119(g) Information, Calcul, Communication (ICC-SV) EPFL - Fall Semester 2024

For reference, all the values that can be represented exactly with this 7-bit simplified floating point
representation:

m
an

t.
00

00
00

01
00

10
00

11
01

00
01

01
01

10
01

11
10

00
10

01
10

10
10

11
11

00
11

01
11

10
11

11
ex

p.
00

0
1

1.
06

25
1.

12
5

1.
18

75
1.

25
1.

31
25

1.
37

5
1.

43
75

1.
5

1.
56

25
1.

62
5

1.
68

75
1.

75
1.

81
25

1.
87

5
1.

93
75

00
1

2
2.

12
5

2.
25

2.
37

5
2.

5
2.

62
5

2.
75

2.
87

5
3

3.
12

5
3.

25
3.

37
5

3.
5

3.
62

5
3.

75
3.

87
5

01
0

4
4.

25
4.

5
4.

75
5

5.
25

5.
5

5.
75

6
6.

25
6.

5
6.

75
7

7.
25

7.
5

7.
75

01
1

8
8.

5
9

9.
5

10
10

.5
11

11
.5

12
12

.5
13

13
.5

14
14

.5
15

15
.5

10
0

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

10
1

32
34

36
38

40
42

44
46

48
50

52
54

56
58

60
62

11
0

64
68

72
76

80
84

88
92

96
10

0
10

4
10

8
11

2
11

6
12

0
12

4
11

1
12

8
13

6
14

4
15

2
16

0
16

8
17

6
18

4
19

2
20

0
20

8
21

6
22

4
23

2
24

0
24

8

Page 6


	Positive Decimal Numbers
	Overflow and Capacity
	Overflow in Signed Integer Addition and Subtraction
	Hexadecimal Representation
	Representation of Floating-Point Numbers
	Decimal to Floating-Point Representation

